Dau Duc, Le Duc Giang

Main Article Content

Abstract

An efficient method for the synthesis of 1,2-disubstituted benzimidazoles has been developed from 1,2‐diaminobenzenes and aldehydes using 1-butyl-3-methylimidazolium ([Bmim]BF4) as a catalyst under solvent-free conditions. Various products were obtained in good to excellent yields under microwave irradiation. The synthesis features some advantages such as short reaction time, environmentally benign conditions, simple work-up procedure, and high efficiency.

Keywords: 1,2-disubstituted benzimidazoles, microwave irradiation, 1,2‐diaminobenzenes, cyclization.

References

[1] D. A. Horton, G. T. Bourne, M. L. Smythe, The Combinatorial Synthesis of Bicyclic Privileged Structures or Privileged Substructures, Chem, Rev, Vol. 103, No. 3, 2003, pp. 893-930, https://doi.org/10.1021/cr020033s.
[2] S. D. Undevia, F. Innocenti, J. Ramirez, L. House, A. A. Desai, L. A. Skoog, D. A. Singh, T. Karrison, H. L. Kindler, M. J. Ratain, A phase I and Pharmacokinetic Study of the Quinoxaline Antitumour Agent R(+)XK469 in Patients with Advanced Solid Tumours, Eur. J. Cancer, Vol. 44, No. 12, 2008, pp. 1, https://doi.org/10.1016/j.ejca.2008.05.018.
[3] M. Loriga, S. Piras, P. Sanna, G. Paglietti, Quinoxaline Chemistry, Part 7. 2-[aminobenzoates]- and 2-[aminobenzoylglutamate]-quinoxalines as Classical Antifolate Agents, Synthesis and Evaluation of in Vitro Anticancer, Anti-HIV and Antifungal Activity, Farmaco, Vol. 52, No. 3, 1997, pp. 157-166,
https://doi.org/10.1002/CHIN.199740197.
[4] Z. Lixin, L. D Arnold, Natural Products: Drug Discovery and Therapeutic Medicine; Humana Press: Totowa, NJ, 2005, pp. 341.
[5] R. Sarges, H. R. Howard, R. G. Browne, L. A. Lebel, P. A. Seymour, B. K. Koe, 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines, A Novel Class of Potent Adenosine Receptor Antagonists and Potential Rapid-onset Antidepressants, J. Med. Chem, Vol. 33, No. 8, 1990, pp. 2240-2254, https://doi.org/10.1021/jm00170a031.
[6] S. Arulmurugan, H. P. Kavitha, S. Sathishkumar, R. Arulmozhi, Biologically Active Benzimidazole Derivatives, Mini-Rev, Org. Chem, Vol. 12, No. 2, 2015, pp. 178-195, https://doi.org/10.2174/1570193X1202150225153403.
[7] S. Salahuddin, S. Shaharyar, A. Mazumde, Benzimidazoles: A Biologically Active Compounds, Arab. J. Chem, Vol. 10, No. 1, 2017, pp. S157-S173, https://doi.org/10.1016/j.arabjc.2012.07.017.
[8] N. Singh, D. O. Jang, Benzimidazole-Based Tripodal Receptor:  Highly Selective Fluorescent Chemosensor for Iodide in Aqueous Solution, Org. Lett, Vol. 9, No. 10, 2007, pp. 1991-1994, https://doi.org/10.1021/ol070592r.
[9] P. Chaudhuri, B. Ganguly, S. Bhattacharya, An Experimental and Computational Analysis on the Differential Role of the Positional Isomers of Symmetric Bis-2-(pyridyl)-1H-benzimidazoles as DNA Binding Agents, J. Org. Chem, Vol. 72, No. 6, 2007, pp. 1912-1923, https://doi.org/10.1021/jo0619433.
[10] A. Sannigrahi, D. Arunbabu, R. M. Sankar, T. Jana, Aggregation Behavior of Polybenzimidazole in Aprotic Polar Solvent, Macromolecules, Vol. 40, No. 8, 2007, pp. 2844-2851, https://doi.org/10.1021/ma070049q.
[11] Y. Ooyama, T. Nakamura, K. Yoshida, Heterocyclic Quinol-Type Fluorophores, Synthesis of Novel Imidazoanthraquinol Derivatives and Their Photophysical Properties in Benzene and in the Crystalline State, New J. Chem, Vol. 29, No. 3, 2005, pp. 447-456, https://doi.org/10.1039/B410311D.
[12] G. N. Vázquez, H. M. Diaz, S. E. Soto, M. T. Piedra, Microwave-Assisted One-Pot Synthesis of 2-(Substituted phenyl)-1H-benzimidazole Derivatives, Synth, Commun, Vol. 37, No. 17, 2007, pp. 2815-2825,
https://doi.org/10.1080/00397910701473325.
[13] D. Secci, A. Bolasco, M. D’Ascenzio, F. della Sala, M. Yáñez, S. Carradori, Conventional and Microwave-Assisted Synthesis of Benzimidazole Derivatives and Their in Vitro Inhibition of Human Cyclooxygenase, J. Heterocyclic Chem, Vol. 40, No. 5, 2012, pp. 1187-1195, https://doi.org/10.1002/jhet.105.
[14] R. Sharma, M. Abdullaha, S. B. Bharate, Metal-Free Ionic-Liquid-Mediated Synthesis of Benzimidazoles and Quinazolin-4(3H)-ones from Benzylamines, Asian J. Org. Chem, Vol. 6, No. 10, 2017, pp. 1370-1374,
https://doi.org/10.1002/ajoc.201700214.
[15] T. T. Nguyen, T. X. T. Nguyen, H. T. L. Nguyen, H. Tran, Synthesis of Benzoxazoles, Benzimidazoles, and Benzothiazoles Using a Brønsted Acidic Ionic Liquid Gel as an Efficient Heterogeneous Catalyst under a Solvent-Free Condition, ACS Omega, Vol. 4, No. 1, 2019, pp. 368-373, https://doi.org/10.1021/acsomega.8b02932.
[16] S. Majumdar, A. Chakraborty, S. Bhattacharjee, S. Debnath, D. K. Maiti, Silica-ferric Chloride (SiO2-FeCl3) Catalyzed Selective Synthesis of 2-substituted Benzimidazole through Csp2-Csp3 Bond Cleavage of -ketoester/amide, Tetrahedron, Lett, Vol. 57, No. 41, 2016, pp. 4595-4598, https://doi.org/10.1016/j.tetlet.2016.08.099.
[17] C. S. Cho, J. Kim, Ruthenium-Catalyzed Synthesis of Benzimidazoles from N-Alkyl-1,2-diaminobenzenes via Alkyl Group Transfer, Bull, Korean Chem, Soc, Vol. 29, No. 6, 2008, pp. 1097-1098,
https://doi.org/10.5012/bkcs.2008.29.6.1097.
[18] S. H. Nile, B. Kumar, S. W. Park, Chemo Selective One-pot Synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using Amberlite IR-120, Arab. J. Chem, Vol. 8, No. 5, 2015, pp. 685-691, https://doi.org/10.1016/j.arabjc.2012.12.006.
[19] R. S. Mekala, S. K. Balam, J. P. S. Harinath, R. R. Gajjal, S. R. Cirandur, Polyethylene Glycol (PEG-400): An Efficient Medium for the Synthesis of 1,2-disubstituted Benzimidazoles, Cogent Chemistry, Vol. 1, No. 1, 2015, pp. 1049932, https://doi.org/10.1080/23312009.2015.1049932.
[20] S. Senthilkumar, M. Kumarraja, A Facile and Highly Chemoselective Synthesis of 1,2-disubstituted Benzimidazoles using Hierarchical Nanoporous Material, Tetrahedron. Lett, Vol. 55, No. 12, 2014, pp. 1971-1974,
https://doi.org/10.1016/j.tetlet.2014.01.140.
[21] C. Zhou, J. Lei, Y. Liu, C. Au, Y. Chen, S. F. Yin, An Organoantimony Nitrate Complex with Azastibocine Framework as Water Tolerant Lewis Acid Catalyst for the Synthesis of 1,2-disubstitued Benzimidazoles, Appl Organomet Chem, Vol. 34, No. 10, 2020, pp. e5881, https://doi.org/10.1002/aoc.5881.
[22] J. P. Lin, F. H. Zhang, Y. Q. Long, Solvent/Oxidant-Switchable Synthesis of Multisubstituted Quinazolines and Benzimidazoles via Metal-Free Selective Oxidative Annulation of Arylamidines, Org. Lett, Vol. 16, No. 11, 2014, pp. 2822-2825, https://doi.org/10.1021/ol500864r.
[23] X. Sun, X. H. Lv, L. M. Ye, Y. Y. Hu, Y. Chen, X. J. Zhang, M. Yan, Synthesis of Benzimidazoles Via Iridium-catalyzed Acceptorless Dehydrogenative Coupling, Org. Biomol, Chem., Vol. 13, No. 27, 2015, pp. 7381-7383,
https://doi.org/10.1039/C5OB00904A.
[24] S. B. Sapkal, K. F. Shelke, S. S. Sonar, B. B. Shingate, N. S. Shingare, Acidic Ionic Liquid Catalyzed Environmentally Friendly Synthesis of Benzimidazole Derivatives, Catal, Soc, India, Vol. 2, 2009, pp. 78-83.