Nguyen Thi Thanh Mai, Nguyen Manh Ha

Main Article Content

Abstract

Ten new chromone derivatives were synthesized from the original 2-4-6-trihydroxyacetophenone using microwave irradiation. The product's structures were confirmed by FT-IR, 1H-NMR, and 13C-NMR spectra data. The anti-microbial activities of the obtained compounds were tested by the disc diffusion method. The results showed that most chromones have significant biological activities against Candida albicans.

Keywords: 2-4-6-trihydroxyacetophenone, chromone, solvent free, domestic microwave oven

References

[1] R. J. Nijveldt, E. V. Nood, D. E. C. V. Hoorn, P. G. Boelens, K. V. Norren, P. A. M. V. Leeuwen, Flavonoids: A Review of Probable Mechanisms Ofaction and Potential Applications, Am J. Clin Nutr, Vol. 74, 2001, pp. 418-425.
[2] A. M. Edwards, J. B. L. Howell, The Chromones: History, Chemistry and Clinical Development, Clin, Exp, Allergy, Vol. 30, 2000, pp. 756-774.
[3] N. F. L. Machado, M. P. M. Marques, Bioactive Chromone Derivatives-Structural Diversity, Current Bioactive Compds, Vol. 6, 2010, pp. 76-89.
[4] J. B. Harborne, C. A. Williams, Advances in Flavonoid Research Since 1992, Phytochemistry, Vol. 55, 2000, pp. 481-504.
[5] A. Pick, H. Muller, R. Mayer, B. Haenisch, I. K. Pajeva, M. Weigt, H. Bonisch, C. E. Muller, M. Wiese, Structure-Activity Relationships of Flavonoids as Inhibitors of Breast Cancer Resistance Protein (BCRP), Bioorg Med Chem, Vol. 19, 2011, pp. 2090-2102.
[6] S. Amaral, L. Mira, J. M. F. Nogueira, A. P. Da Silva, M. H. Florencio, Plant Extracts with Antiinflammatory Properties-A New Approach for Characterization of Their Bioactive Compounds and Establishment of Structure-Antioxidant Activityrelationships, Bioorg Med Chem, Vol. 17, 2009, pp. 1876-1883.
[7] H. Mastuda, T. Morikawa, K. Ueda, H. Managi, M. Yoshikawa, Structural Requirements of Flavonoids for Inhibition of Antigen-Induced Degranulation, TNF-α and IL-4 Production from RBL-2H3 Cells, Bioorg Med Chem, Vol. 10, 2002, pp. 3123-3128.
[8] M. Ferrali, D. Donati, S. Bambagioni, M. Fontani, G. Giorgi, A. Pietrangelo, 3-Hydroxy-(4H)-benzopyran-4-ones as Potential Iron Chelating Agents in Vivo, Bioorg Med Chem, Vol. 9, 2001, pp. 3041-3047.
[9] J. X. Gong, K. X. Huang, F. Wang F, L. X. Yang, Y. B. Feng, H. B. Li, X. K. Li, S. Zeng, X. M. Wu, J. Stoeckigt, Y. Zhao, J. Qu, Preparation of Two Sets of 5,6,7-Trioxygenated Dihydroflavonol Derivatives as Free Radical Scavengers and Neuronal Cell Protectors to Oxidative Damage, Bioorg Med Chem, Vol. 17, 2009, pp. 3414-3425.
[10] S. Burda, W. Oleszek, Antioxidant and Antiradical Activities of Flavonoids, J. Agric Food Chem, Vol. 49, 2001, pp. 2774-2779.
[11] Z. Nowakowska, A Review of Anti-Infective and Anti-Inflammatory Chalcone, Eur J. Med Chem, Vol. 42, 2007, pp. 125-137.
[12] H. Ungwitayatorn, W. Samee, J. Pimthon, 3D-QSAR Studies on Chromone Derivatives as HIV-1 Protease Inhibitors, J. Mol Struct, Vol. 689, 2004, pp. 99-106.
[13] J. A. Hadfield, S. Ducki, N. Hirst N, A. T. McGown, Progress in Cell Cycle Research, Editions Life in Progress: New York, Vol. 5. 2003, pp. 309-325.
[14] L. Rackova, S. Firakova, D. Kostalova, M. Stefek, E. Sturdik , M. Majekova, Oxidation of Liposomal Membrane Suppressed by Flavonoids: Quantitative Structure-Activity Relationship, Bioorg Med Chem, Vol. 13, 2005, pp. 6477-6484.
[15] E. Middleton, C. Kandaswami, T. C. Theoharides, The Effects of Plant Flavonoids on Mammalian Cells: Implications for Inflammation, Heart Disease and Cancer, Pharmacol Rev, Vol. 52, 2000, pp. 673-751.
[16] C. J. Bennett, S. T. Caldwell, D. B. McPhail, P. C. Morrice, G. G. Duthie, R. C. Hartley, Potential Therapeutic Antioxidants that Combine the Radical Scavenging Ability of Myricetin and the Lipophilic Chain of Vitamin E to Effectively Inhibit Microsomal Lipid Peroxidation, Bioorg Med Chem, Vol. 12, 2004, pp. 2079-2098.
[17] A. I. Dirar, D. H. M. Alsaadi, M. Wada, M. A. Mohamed, T. Watanable, H. P. Devkota, Effects of Extraction Solvents on Total Phenolic and Flavonoid Contents and Biological Activities of Extracts from Sudanese Medicinal Plant, South African Fournal of Botany, Vol. 120, 2019, pp. 261-267.
[18] A. M. G. Eldeen, P. C. Djemgou, M. Tchuendem, B. T. Ngadjui, P. Tane, H. Toshifumi, Anti-Cancer and Immunostimulatory Activity of Chromones and Other Constituents from Cassia Petersiana, J. Biosci, Vol. 62, 2007, pp. 331-338.
[19] B. P. Bandgar, S. S. Gawande, R. G. Bodade, J. V. Totre, C. N. Khobragade, Synthesis and Biological Evaluation of Simple Methoxylated Chalcones as Anticancer, Anti-Inflammatory and Antioxidant Agents, Bioorg Med Chem, Vol. 18, 2010, pp. 1364-1370.
[20] H. Z. Alkhathlan, H. M. A. Hazimi, F. S. A. Dhalaan, A. A. Mousa, Three 2-(2-Phenylethyl)Chromones and Two Terpenes from Agarwood, Nat. Prod. Res, Vol. 19, 2005, pp. 367-372.
[21] H. Lee, K. Lee, J. K. Jung, J. Cho, E. A. Theodorakis, Synthesis and Evaluation of 6-hydroxy-7-methoxy-4-chromanone and chroman-2-carboxamides as Antioxidants, Bioorg Med Chem Lett, Vol. 15, 2005, pp. 2745-2748.
[22] R. S. Varma, Chemical Syntheses Using Microwave Irradiation, Bangalore: Kavitha Printers, 2002.
[23] X. F. Wu, H. Neumann, A. Spannenberg, T. Schulz, H. J. Jiao, M. Beller, Development of a General Palladium-Catalyzed Carbonylative Heck Reaction of Aryl Halides, J. Am Chem Soc, Vol. 132, 2010, pp. 14596-14602.
[24] T. Konishi, T. Konoshima, Y. Shimada, S. Kiyosawa, Six new 2-(2-Phenylethyl)Chromones from Agarwood, Chem, Pharm, Bull, Vol. 50, 2002, pp. 419-422.
[25] T. Yagura, M. Ito, F. Kiuchi, G. Honda, Y. Shimada, Four new 2-(2-phenylethyl)chromone Derivatives from Withered Wood of Aquilaria Sinensis, Chem, Pharm, Bull, Vol. 51, 2003, pp. 560-564.
[26] S. Losgen, J. Magull, B. Schulz, S. Draeger, A. Zeeck, Isofusidienols: Novel Chromone-3-Oxepines Produced by the Endophytic Fungus Chalarasp, Eur. J. Org. Chem, Vol. 4, 2008, pp. 698-703.
[27] L. Dinparast, S. Hemmati, A. A. Alizaadeh, G. Zengin, H. S. Kafil, M. B. Bahadori, S. Dastmalchi, An Effcient, Catalyst-Free, One-Pot Synthesis of 4H-chromene Derivatives and Investigating Their Biological Activities and Mode of Interactions using Molecular Docking Studies, Journal of Molecular Structure, Vol. 1203, 2020, pp. 127426.
[28] C. B. Patil, S. K. Mahajan, S. A. Katti, Chalcone: A Versatile Molecule, J. Pharm Sci Res, Vol. 1, 2009, pp. 11-22.
[29] K. A. Ismail, T. A. E. Aziem, Synthesis and Biological Evaluation of some Novel
4H-Benzopyran-4-one Derivatives as Nonsteroidal Antiestrogens, Eur J. Med Chem, Vol. 36, 2001, pp. 243-253.
[30] N. D. Thanh, N. T. T. Mai, Synthesis of N-tetra-O-acetyl-β-D-glucopyranosyl-N′-(4′,6′-Diarylpyrimidin-2′-yl) Thioureas, Carbohydrate Research, Vol. 344, 2009, pp. 2399-2405.
[31] R. S. Varma, Solvent-Free Accelerated Organic Syntheses using Microwaves, Pure Appl Chem, Vol. 73, 2001, pp. 193-198.
[32] N. T. T. Mai, N. T. Huu, Synthesis of Some 2-Amino-4-(4′-Methoxyphenyl)- 6-Arylpyrimidines using Microwave-Assisted One-Pot Reaction under Solvent Free Conditions, VNU Journal of Science: Natural Sciences and Technology, Vol. 32, 2016, pp. 1-5.
[33] N. T. T. Mai, N. P. Thuy, H. X. Anh, T. T. Thuy, H. T. B. Ngoc, N. T. Nga, N. T. Tuyet, Study on Synthesis Some Chromones from 2,4,6-Trihydroxyacetophenone, HaUI Journal of Science & Technology, Vol. 34, 2016, pp. 77-79.
[34] P. Wyrebek, A. Sniady, N. Bewick, Y. Li, A. Mikus, Microwave-Assisted Zinc Chloride-Catalyzed Synthesis of Substituted Pyrroles from Homopropargyl Azides, Tetrahedron, Vol. 65, 2009, pp. 1268-1275.
[35] L. Ballell, R. A. Field, G. A. C. Chung, R. J. Young, Bioorg, Med, Chem. Lett, Vol. 17, 2007, pp. 1736-1742.
[36] A. K. Dash, D. Mukherjee, A. Dhulap, S. Haider, D. Kumar, Green Chemistry Appended Synthesis, Metabolic Stability and Pharmacokinetic Assessment of Medicinally Important Chromene Dihydropyrimidinones, Bioorganic & Medicinal Chemsitry Letters, Vol. 29. 2019, pp. 126750.
[37] J. A. Joule, K. Mills, Heterocyclic Chemistry 5th ed, Chichester, United Kingdom, 2010.
[38] A. Loupy, Microwave in Organic Synthesis, WiletVCH Verlag GmbH, Weinheim, 2002.
[39] P. T. Anastas, J. C. Warner, Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998.
[40] A. Loupy, A. Petit, D. Bogdal, Microwave and Phase - Transfer Catalysis, Weinheim: Wiley- VCH Verlag, 2002.
[41] R. A. Turner, In Analgesics: Screening Methods in Pharmacology, Chapter 11, Academic Press, London, Vol. 8, 1965, pp. 100-117.
[42] L. Kubicova, M. Pour, M. Lacova, K. Kralova, J. Chovancova, J. Kaustova, Synthesis and Biological Activity of 2-(4H-4-oxobenzopyran-3-yl)-3-Phenyl-1,2-Dihydroquinazolin-4(3H)-Ones, International Electronic Conferences on Synthetic Organic Chemistry, 5th, 6th, Sept, 2001, pp. 1-30, and 2002 and 7th, 8th, Nov, 2003, pp. 1-30, and 2004, pp. 962-968, (Chem. Abstr., Vol. 144, 2005, pp. 292685).