Do Quang Trung

Main Article Content

Abstract

Biocontrol of stem end disease agent, Alternaria alternata YZU, on pitaya is more interested in altering the application of chemical pesticides. This study was conducted to characterize antagonistic phosphate solubilizing bacteria (PSB) from rhizosphere soil for their biocontrol activities against A. alternata YZU under laboratory and greenhouse conditions. Six PSB isolated from 31 rhizosphere soil samples were tested for inhibiting the mycelial growth of A. alternata YZU in dual cultures. Six isolates were determined to inhibit the mycelial growth of A. alternata YZU. Among them, PSB31 presented the highest level of antagonistic activity against A. alternata YZU with a mean inhibition diameter of 0.64 ± 0.02 cm, while the other strains, including PSB11, PSB21, PSB41, PSB51, and PSB61 presented a weaker inhibition. The results also showed that the strain PSB31 was identified as Bacillus sp. strain PSB31 (Accession number: ON422095) and could control the mycelial growth of A. alternata YZU by secreting antifungal metabolites. Moreover, an in vivo antagonistic experiment of PSB31 on pitaya twigs showed a significant reduction of lesions on twigs than the control. The results suggested that the isolated PSB31 is a potential biological control agent. Further studies should be done to identify the biochemical basis of their activity against A. alternata YZU.

Keywords: Alternaria alternata, Bacillus sp, biocontrol, phosphate-solubilizing bacteria, rhizosphere soil.

References

[1] T. A. Luu, Q. T. Phi, T. T. Nguyen, M. V. Dinh, B. N. Pham, Q. T. Do, Antagonistic Activity of Endophytic Bacteria Isolated from Weed Plant Against Stem end Rot Pathogen of Pitaya in Vietnam, Egyptian Journal of Biological Pest Control, Vol. 31, 2021, pp 14, https://doi.org/10.1186/s41938-021-00362-0.
[2] W. H. I. V. Mimbs, J. P. W. Cusaac, L. M. Smith, S. T. McMurry, J. B. Belden, Occurrence of Current-use Fungicides and Bifenthrin in Rainwater Basin Wetlands, Chemosphere, Vol. 159, 2016, pp. 275-281,
https://doi.org/10.1016/j.chemosphere.2016.06.012.
[3] K. Liu, M. Newman, J. A. McInroy, C. H. Hu, J. W. Kloepper, Selection and Assessment of Plant Growth-promoting Rhizobacteria for Biological Control of Multiple Plant Diseases, Phytopathology, Vol. 107, 2017, pp. 928-936, https://doi.org/10.1094/PHYTO-02-17-0051-R.
[4] N. Ashwin, S. Srividya, Potentiality of Bacillus subtilis as Biocontrol Agent For Management of Anthracnose Disease of Chilli Caused by Colletotrichum gloeosporioides OGC1.3, Biotechnology, Vol. 4, 2014, pp.127-136, https://doi.org/10.1007/s13205-013-0134-4.
[5] M. Mochizuki, S. Yamamoto, Y. Aoki, S. Suzuki, Isolation And Characterisation of Bacillus amyloliquefaciens S13-3 as A Biological Control Agent for Anthracnose Caused by Colletotrichum gloeosporioides, Biocontrol Science and Technology, Vol. 22, 2012, pp. 697-709, https://doi.org/10.1080/09583157.2012.679644.
[6] D. G. Panpatte, Y. K. Jhala, H. N. Shelat, R. V. Vyas, Pseudomonas fluorescens: A Promising Biocontrol Agent and PGPR for Sustainable Agriculture, in: Singh D, Singh H, Prabha R (eds) Microbial Inoculants in Sustainable Agricultural Productivity, Springer, New Delhi, India, 2016.
[7] H. F. R. Cariño, P. C. G. Mendoza, V. S. López, J. A. C. Parra, T. R. Reyes, C. A. Dunlap, R. V. Blanco, Biocontrol of Alternaria Alternata and Fusarium Oxysporum by Trichoderma Asperelloides and Bacillus Paralicheniformis in Tomato Plants, Antonie van Leeuwenhoek, Vol. 113, 2020, pp. 1247-1261, https://doi.org/10.1007/s10482-020-01433-2.
[8] F. M. Freimoser, M. P. R. Mejia, B. Tilocca, Q. Migheli, Biocontrol Yeasts: Mechanisms and Applications, World Journal of Microbiology and Biotechnology, Vol. 35, 2019, pp. 154, https://www.org.doi/10.1007/s11274-019-2728-4.
[9] J. K. Biswas, A. Banerjee, M. Rai, R. Naidu, B. Biswas, M. Vithanage, M. C. Dash, S. K. Sarkar, E. Meers, Potential Application of Selected Metal Resistant Phosphate Solubilizing Bacteria Isolated From the Gut of Earthworm (Metaphire posthuma) in Plant Growth Promotion, Geoderma, Vol. 330, 2018, pp. 117-124,
https://www.org.doi/10.1016/j.geoderma.2018.05.034.
[10] Y. Wei, Y. Zhao, M. Shi, Z. Cao, Q. Lu, T. Yang, Y. Fan, Z. Wei, Effect of Organic Acids Production and Bacterial Community on the Possible Mechanism of Phosphorus Solubilization during Composting with Enriched Phosphate-solubilizing Bacteria Inoculation, Bioresource Technology, Vol. 247, 2018, pp. 190-199,
https://www.org.doi/10.1016/j.biortech.2017.09.092.
[11] D. Chen, J. Huang, L. Yuan, A New Function of the Biocontrol Bacterium Lysobacter enzymogenes LE16 in the Mineralization of Soil Organic Phosphorus, Plant and Soil, Vol. 442, 2019, pp. 299-309, https://doi.org/10.1007/s11104-019-04175-x.
[12] M. Rasul, S. Yasmin, M. Zubair, N. Mahreen, S. Yousaf, M. Arif, Z. I. Sajid, M. S. Mirza, Phosphate Solubilizers as Antagonists for Bacterial Leaf Blight with Improved Rice Growth in Phosphorus Deficit Soil, Biological Control, Vol. 136, 2019, pp. 103997, https://doi.org/10.1016/j.biocontrol.2019.05.016.
[13] A. G. Vila, N. Teixidó, M. Sisquella, R. Torres, J. Usall, Biological Characterization of the Biocontrol Agent Bacillus Amyloliquefaciens CPA-8: The Effect of Temperature, pH and Water Activity on Growth, Susceptibility to Antibiotics and Detection of Enterotoxic Genes, Current Microbiology, Vol. 74, 2017, pp. 1089-1099,
https://doi.org/10.1007/s00284-017-1289-8.
[14] E. Tozlu, N. Tekiner, S. Örtücü, Investigation on the Biological Control of Alternaria alternata, Indian Journal of Agricultural Sciences, Vol. 88, 2018, pp. 1241-1248, https://doi.org/10.3390/plants8110463.
[15] Z. Xie, M. Li, D. Wang, F. Wang, H. Shen, G. Sun, C. Feng, X. Wang, D. Chen, X. Sun, Biocontrol Efficacy of Bacillus siamensis LZ88 against Brown Spot Disease of Tobacco Caused by Alternaria alternata, Biological Control, Vol. 154, 2021, pp. 104508, https://doi.org/10.1016/j.biocontrol.2020.104508.
[16] M. H. Mohd, B. Salleh, L. Zakaria, Identification and Molecular Characterizations of Neoscytalidium dimidiatum Causing Stem Canker of Red-fleshed Dragon Fruit (Hylocereus polyrhizus) in Malaysia, Journal of Phytopathology, Vol. 161, 2013, pp. 841-849, https://www.org.doi/10.1111/jph.12146.
[17] Z. Teng, W. Shao, K. Zhang, Y. Huo, M. Li, Characterization of Phosphate Solubilizing Bacteria Isolated from Heavy Metal Contaminated Soils and Their Potential for Lead Immobilization, Journal of Environmental Management, Vol. 231, 2019, pp. 189-197, https://doi.org/ 10.1016/j.jenvman.2018.10.012.
[18] F. Wu, J. Li, Y. Chen, L. Zhang, Y. Zhang, S. Wang, X. Shi, L. Li, J. Liang, Effects of Phosphate Solubilizing Bacteria on the Growth, Photosynthesis, and Nutrient Uptake of Camellia oleifera Abel, Forests, Vol. 10, 2019, pp. 348, https://doi.org/10.3390/f10040348.
[19] B. A. Halo, R. A. A. Yahyai, A. M. A. Sadi, Aspergillus terreus Inhibits Growth and Induces Morphological Abnormalities in Pythium aphanidermatum and Suppresses Pythium-Induced Damping-off of Cucumber, Frontiers in Microbiology, Vol. 9, 2018, pp. 95, https://doi.org/10.3389/fmicb.2018.00095.
[20] K. S. Han, B. R. Kim, J. T. Kim, S. S. Hahm, K. H. Hong, C. K. Chung, Y. G. Nam, S. H. Yu, J. E. Choi, Biological Control of White Rot in Garlic Using Burkholderia pyrrocinia CAB08106-4, Research in Plant Disease, Vol. 19, 2013, pp. 21-24, https://doi.org/10.5423/RPD.2013.19.1.021.
[21] Y. K. Kwak, I. S. Kim, M. C. Cho, S. C. Lee, S. Kim, Growth Inhibition Effect of Environment-friendly Farm Materials in Colletotrichum acutatum in vitro, Journal of Bio-environment Control, Vol. 21, 2012, pp. 127-133.
[22] Z. Li, B. Guo, K. Wan, M. Cong, H. Huang, Y. Ge, Effects of Bacteria-free Filtrate from Bacillus megaterium Strain L2 on the Mycelium Growth and Spore Germination of Alternaria alternata, Biotechnology and Biotechnological Equipment, Vol. 29, 2015, pp. 1062-1068, https://doi.org/10.1080/13102818.2015.1068135.
[23] P. Jin, H. Wang, Z. Tan, Z. Xuan, G. Y. Dahar, Q. X. Li, W. Miao, W. Liu, Antifungal Mechanism of Bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz, Pesticide Biochemistry and Physiology, Vol. 163, 2020, pp. 102-107, https://doi.org/10.1016/j.pestbp.2019.11.004.
[24] C. V. Hawkes, E. W. Connor, Translating Phytobiomes from Theory to Practice: Ecological and Evolutionary Considerations, Phytobiomes, Vol. 1, 2017, pp. 57-69, https://doi.org/10.1094/PBIOMES-05-17-0019-RVW.
[25] R. Lahlali, Y. Hamadi, M. El Guilli, M. H. Jijakli, Efficacy Assessment of Pichia guilliermondii Strain Z1, a New Biocontrol Agent, Against Citrus Blue Mould in Morocco under the Influence of Temperature and Relative Humidity, Biological Control, Vol. 56, 2011, pp. 217-224, https://doi.org/10.1016/j.biocontrol.2010.12.001.
[26] A. E. Ghaouth, J. L. Smilanick, G. E. Brown, A. Ippolito, C. L. Wilson, Control of Decay of Apple and Citrus Fruits in Semicommercial Tests with Candida Saitoana and 2-Deoxy-D-Glucose, Biological Control, Vol. 20, 2001, pp. 96-101, https://doi.org/10.1006/bcon.2000.0894.
[27] J. K. Biswas, A. Banerjee, M. Rai, R. Naidu, B. Biswas, M. Vithanage, M. C. Dash, S. K. Sarkar, E. Meers, Potential Application of Selected Metal Resistant Phosphate Solubilizing Bacteria Isolated from the Gut of Earthworm (Metaphire posthuma) in Plant Growth Promotion, Geoderma, Vol. 330, 2018, pp. 117-124,
https://doi.org/10.1016/j.geoderma.2018.05.034.
[28] S. P. Chowdhury, A. Hartmann, X. Gao, R. Borriss, Biocontrol Mechanism by Root-associated Bacillus amyloliquefaciens FZB42: A Review, Fronter in Microbiology, Vol. 6, 2015, pp. 780, https://doi.org/10.3389/fmicb.2015.00780.
[29] Y. Wei, Y. Zhao, M. Shi, Z. Cao, Q. Lu, T. Yang, Y. Fan, Z. Wei, Effect of Organic Acids Production and Bacterial Community on the Possible Mechanism of Phosphorus Solubilization during Composting with Enriched Phosphate-solubilizing Bacteria Inoculation, Bioresource Technology, Vol. 247, 2018, pp. 190-199,
https://doi.org/10.1016/j.biortech.2017.09.092.