Nguyen Thy Ngoc, Bui Bich Hau

Main Article Content

Abstract

Myeloproliferative neoplasm is a group of blood cancers, including three main diseases: essential thrombocythemia, primary myelofibrosis, and polycythemia vera. Several molecular signaling pathways such as JAK/STAT, PI3K or SHP have been demonstrated that play a crucial role in controlling the signaling-mediated immune response related to Myeloproliferative neoplasms. The mutation JAK2 V617F substitutes phenylalanine for valine at position 617 in the JH2 domain of exon 14, leading to constitutive activation of the JAK-STAT and other pathways resulting in uncontrolled cell growth. This mutation has been found in a large proportion of myeloproliferative neoplasm patients. In this study, we performed a docking simulation test by Yasara, Pyrx, and Pymol to evaluate the effect of this variant on the model structure of the JH2 domain compared to wild-type allele, thus verifying the impact of mutation V617F on the function of Janus Kinase. The result showed that there was a significant effect that this mutation can cause on the interaction between the JH2 model and ATP. In detail, after redocking simulation, the wild type structure showed 16 hydrogen bonds binding between ATP and amino acids including T555, T557, K581, Q626, E627, N673, K677, P700, and R715 with the binding energy of -10 (kcal/mol), while the mutant model expressed 15 hydrogen bonds linked with the amino acids of T555, T557, K581, Q626, E627, N673, K677, and N678, with the binding energy of -9.6 (kcal/mol). This result may provide a better understanding of the critical role of Janus kinase in the pathogenesis of myeloproliferative disorders.

Keywords: Janus kinase, JAK2 V617F, Molecular Docking, Myeloproliferative neoplasms.

References

[1] M. Wadleigh, A. Tefferi, Classification and Diagnosis of Myeloproliferative Neoplasms According to the 2008 World Health Organization Criteria, International Journal of Hematology, Vol. 91, No. 2, 2010, pp. 174-179, https://doi.org/ 10.1007/s12185-010-0529-5.
[2] R. M. Shallis, R. Wang, A. Davidoff, X. Ma, N. A. Podoltsev, A. M. Zeidan, Epidemiology of the Classical Myeloproliferative Neoplasms: The Four Corners of an Expansive and Complex Map, Blood reviews, Vol. 42, 2020, pp. 100706, https://doi.org/ 10.1016/j.blre.2020.100706.
[3] S.R. Hubbard, Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase, Frontiers in endocrinology, Vol. 8, 2017, pp. 361, https://doi.org/10.3389/fendo.2017.00361.
[4] [R Ferrao, P. J. Lupardus, The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK-Receptor Interactions, Frontiers in endocrinology, Vol. 8, 2017, pp. 71, https://doi.org/10.3389/fendo.2017.00071.
[5] E. Leroy, A. Dusa, D. Colau, A. Motamedi, X. Cahu, C. Mouton, L. J. Huang, A. K. Shiau, A. N. Constantinescu, Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 alphaC helix, The Biochemical journal, Vol. 473, No. 11, 2016, pp. 1579-1591, https://doi.org/ 10.1042/BCJ20160085.
[6] W. Vainchenker, R. Kralovics, Genetic Basis and Molecular Pathophysiology of Classical Myeloproliferative Neoplasms, Blood, Vol. 129, No. 6, 2017, pp. 667-679, https://doi.org/ 10.1182/blood-2016-10-695940.
[7] A. V. Villarino, Y. Kanno, J. R. Ferdinand, J. J. O'Shea, Mechanisms of Jak/STAT Signaling in Immunity and Disease, The journal of Immunology, Vol. 194, No. 1, 2015, pp. 21-27, https://doi.org/10.4049/jimmunol.1401867.
[8] T. Schwede, J. Kopp, N. Guex, M. C. Peitsch, SWISS-MODEL: An Automated Protein Homology-Modeling Server, Nucleic acids research, Vol. 31, No. 13, 2003, pp. 3381-3385, https://doi.org/10.1093/nar/gkg520.
[9] R. M. Bandaranayake, D. Ungureanu, Y. Shan, D. E. Shaw, O. Silvennoinen, S.R. Hubbard, Crystal Structures of the JAK2 Pseudokinase Domain and the Pathogenic Mutant V617F, Nature structural and molecular biology, Vol. 19, No. 8, 2012, pp. 754-759, https://doi.org/10.1038/nsmb.2348.
[10] C. N. Harrison, S. Koschmieder, L. Foltz, P. Guglielmelli, T. Flindt, M. Koehler, J. Mathias, N. Komatsu, R. N. Boothroyd, A. Spierer et al, The Impact of Myeloproliferative Neoplasms (MPNs) on Patient Quality of Life and Productivity: Results from the International MPN Landmark Survey, Annals of hematology, Vol. 96, No. 10, 2017,
pp. 1653-1665, https://doi.org/10.1007/s00277-017-3082-y.
[11] D. T. Trang, N. H. Giang, B. K. Trang, N. T. Ngoc, N. V. Giang, N. X. Canh, N. B. Vuong, N. T. Xuan, Prevalence of CYLD Mutations in Vietnamese Patients with Polycythaemia Vera, Advances in Clinical and Experimental Medicine, Vol. 31, No. 4, 2022, https://doi.org/10.17219/acem/144027.
[12] N. T. Ngoc, P. H. Nam, T. T. Anh, D. T. Trang, N. T. Xuan, Evaluating Several Methods of JAK2 V617F Mutation Genotyping to Predict the Risk of Getting Polycythemia Vera and Other Myeloproliferative Neoplasm Diseases, Journal of Biotechnology, Vol. 19, No. 3, 2021, pp. 433-440, https://doi.org/10.15625/1811-4989/15666 (in Vietnamese).
[13] A. P. Trifa, A. Cucuianu, L. Petrov, L. Urian, M. S. Militaru, D. Dima, I. V. Pop, R. A. Popp, The
G. Allele of the JAK2 rs10974944 SNP, Part of JAK2 46/1 Haplotype, is Strongly Associated with JAK2 V617F-Positive Myeloproliferative Neoplasms, Annals of hematology, Vol. 89, No. 10, 2010, pp. 979-983, https://doi.org/ 10.1007/s00277-010-0960-y.
[14] A. Sanz, D. Ungureanu, T. Pekkala, R. Ruijtenbeek, I. P. Touw, R. Hilhorst, O. Silvennoinen, Analysis of JAK2 Catalytic Function by Peptide Microarrays: the Role of the JH2 Domain and V617F Mutation, PloS one, Vol. 6, No. 4, 2011, pp. e18522, https://doi.org/10.1371/journal.pone.0018522.