Nguyen Hai Linh, Dinh Mai Linh, Tran Gia Hung, Nguyen Thi Minh Chau, Ngo Hong Anh Thu, Nguyen Thi Son, Nguyen Truong Giang, Phan Thi Tuyet Mai

Main Article Content

Abstract

Pineapple leaf waste, with its high cellulose content, can serve as alternative starting material for the production of carboxymethyl cellulose (CMC). In this study, cellulose was  extracted from pineapple leaf waste by 0.5 M NaOH at 90 oC for 2 h and 0.5 M HNO3 at 90 oC for 2 hour. The obtained cellulose, with average diameters of 3-7 μm, was converted to carboxymethyl cellulose (CMC) by esterification. Preparation of CMC was investigated by varying two factors, namely, sodium hydroxide (NaOH) dosage and monochloroacetic acid (MCA) dosage. The cellulose was soaked in a solution mixture of ethanol and NaOH for 2 h at room temperature. It was then reacted with chloroacetic acid (MCA) at 60 oC for 2 hour. The optimum conditions for carboxymethylation were found to be 0.70 g of MCA/g cellulose, 0.75 g NaOH/g cellulose. The obtained CMC had a high degree of substitution (DS) of 1.0 with the CMC yield of 150%. The obtained CMC were characterized by FTIR spectroscopy, SEM images and XRD diffractions. Moreover, the thickerning performance of the obtained CMC was also determined.

Keywords: Pineapple leaf waste, Carboxymethyl cellulose, degree of substitution (DS), CMC yield, thickening performance.

References

[1] V. Stigsson, G. Kloow, U. Germgård, An Historical Overview of Carboxymethyl Cellulose (CMC) Production on an Industrial Scale, Paper Asia, 2021, Vol. 10, No. 17, pp. 16-21.
[2] Md. S. Rahman, Md. S. Hasan, A. S. Nitai, S. Nam, A. K. Karmakar, Md. S. Ahsan, M. J. A. Shiddiky, M. B. Ahmed, Recent Developments of Carboxymethyl Cellulose-Review, Polymer, 2021, Vol. 13, No. 8, pp. 1345,
https://doi.org/10.3390/polym13081345.
[3] S. J. Marc, M. Yves, R. Denis, Thickening Agent for Aqueous Systems, Formulations Containing Same and use Thereof, Patent, 2017.
[4] M. V. D. Weilen, P. Winston, J. Swazey, R. Clark, M. Lahtinen, Improved Paint Formulations Comprising Cellulose Ether/Network Building Polymer Fluid Gel Thickener, Patent, 2008.
[5] G. B. William, D. B. Valerie, Dishwashing Detergent Gel Composition, Patent, 1979.
[6] R. Singh, J. Singh, Sonika, H. Singh, Green Synthesis of Carboxymethyl Cellulose from Agricultural Waste its Characterization, J. Phys, Conf. Ser., 2022, Vol. 2267, No. 1, https://doi.org/10.1088/1742-6596/2267/1/012144.
[7] T. T. M. Phan, T. S. Ngo, Pectin and Cellulose Extraction from Passion Fruit Peel Waste, Vietnam J. Sci. Technol. Eng., 2020, Vol. 62, No. 1, pp. 32-37.
[8] K. M. Hong, Preparation and Characterization of Carboxylmethyl Cellulose from Surgacane Bagasse, Thesis of B. Sc. Chemistry, Faculty of Science Universiti Tunku Abdul Rahman, 2013.
[9] X. He, S. Wu, D. Fua, L. Nia, Preparation of Sodium CMC from Paper Sludge, J. Chem, Technol, Biotechnol., 2009, Vol. 84, pp. 427-434.
[10] J. Chumee, D. Seeburin, Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose, Inter, J. Mater, Metallurgical Eng., 2014, Vol. 8, No. 5, pp. 435-437.
[11] S. A. Asl, M. Mousavi, M. Labbafi, Synthesis and Characterization of Carboxymethyl Cellulose from Sugarcane Bagasse, J. F. Process. Technol., 2017, Vol. 8, No. 8, pp. 1-6.
[12] R. Khullar, V. K. Varshney, S. Naithani, T. Heinze, P. L. Soni, Carboxymethylation of Cellulosic Material (Average Degree of Polymerization 2600) Isolated from Cotton (Gossypium) Linters with Respect to Degree of Substitution and Rheological Behavior, J. Appl, Polym. Sci., 2005, Vol. 96, pp. 1477-1482.
[13] S. Sophonputtanaphoca, P. Chutong, L. Cha-aim, P. Nooeaid, Potential of Thai Rice Straw as a Raw Material for the Synthesis of Carboxymethylcellulose, Inter, Food Res, J., 2019, Vol. 26, No. 3, pp. 969-978.
[14] S. Z. N. A. Ibrahim, N. Azraaie, N. A. M. Z. Abidin, N. A. M. Razali, F. A. Aziz, XRD and FTIR Studies of Natural Cellulose Isolated from Pineapple (Ananas comosus) Leaf Fibres, Adv. Mater. Res., 2015, Vol. 1087, pp. 197-201.
[15] M. E. R. Cassellis, M. E. S. Pardo, M. R. Lopez, R. M. Escobedo, Structural, Physicochemical and Functional Properties of Industrial Residues of Pineapple, Cellul, Chem. Technol., Vol. 48, No. 7-8, 2014, pp. 633-641.
[16] M. E. S. Pardo, M. E. R. Cassellis, R. M. Escobedo, E. J. García, Chemical Characterisation of the Industrial Residues of the Pineapple, J. Agri. Chem. Environ., 2014, Vol. 3, No. 2, pp. 53-56.
[17] G. I. B. López, R. E. R. Alcudia, L. Veleva, J. A. A. Barrios, G. C. Madrigal, M. M. H. Villegas,
P. C. Burelo, Extraction and Characterization of Cellulose from Agroindustrial Waste of Pineapple (Ananas comosus L. Merrill) Crowns, Chem. Sci. Rev. Lett., 2016, Vol. 5, No. 17, pp. 198-204.
[18] I. M. Fareez, N. A. Ibrahim, W. M. H. W. Yaacob, N. A. M. Razali, A. H. Jasni, F. A. Aziz, Characteristics of Cellulose Extracted from Josapine Pineapple Leaf Fibre After Alkali Treatment Followed by Extensive Bleaching, Cellulose, 2018, Vol. 25, No. 8, pp. 4407-4421.
[19] N. A. Kassim, A. Z. Mohamed, E. S. Zainudin, S. Zakaria, S. K. Zakiah, H. H. Abdullah, Isolation and Characterization of Macerated Cellulose from Pineapple Leaf, Bioresour., Vol. 14, No. 1, 2019, pp. 1198-1209.
[20] S. B. Suhaimi, I. Patthrare, S. Mooktida, W. Tongdeesoontorn, Synthesis of Methyl Cellulose from Nang Lae Pineapple Leaves and Production of Methyl Cellulose Film, Current Appl. Sci. Technol, Vol. 17, No. 2, 2017, pp.233-244.
[21] T. T. M. Phan, T. H. Pham, Potential Biogas Production from Wasted Pineapple Leaves, Chem. J., Vol. 57(6E1), No. 2, 2019, pp. 235-239.
[22] T. T. M. Phan, N. L. Pham, H. L. Nguyen, P. L. To, Investigation on Synthesis of Hydrogel Starting from Vietnamese Pineapple Leaf Waste - Derived Carboxymethylcellulose, Green Analytical Methods and Nanomaterials for Sample Preparation, 2021, https://doi.org/10.1155/2021/6639964.
[23] C. Lopez, R. Colby, P. Graham, J. Cabral, Viscosity and Scaling of Semiflexible Polyelectrolyte NaCMC in Aqueous Salt Solutions, Macromolecules, Vol. 50, 2016, pp. 332-338.
[24] C. L. Lewis, K. Stewart, M. Anthamatten, The Influence of Hydrogen Bonding Side-Groups
on Viscoelastic Behavior of Linear and Network Polymers, Macromolecules, Vol. 47, 2014, pp. 729-740,
https://doi.org/10.1021/ma402368s.
[25] P. Komorowska, S. Różańska, J. Różański, Effect of the Degree of Substitution on the Rheology of Sodium Carboxymethylcellulose Solutions in Propylene Glycol/water Mixtures, Cellulose, Vol. 4, No. 10, 2018, pp. 4151-4162.
[26] C. G. Lopez, S. E. Rogers, R. H. Colby, P. Graham, J. T. Cabral, Structure of Sodium Carboxymethyl Cellulose Aqueous Solutions: A SANS and Rheology Study, J. Polym Sci B Polym Phys., Vol. 53, 2015, pp. 492-501,
https://doi.org/10.1002/polb.23657.
[27] W. M. Kulicke, A. H. Kull, W. Kull, H. Thielking, Characterization of Aqueous Carboxymethylcellulose Solutions in Terms of Their Molecular Structure and its Influence on Rheological Behavior, Polymer, Vol. 37, 1996, pp. 723-2731.
[28] M. S. Yeasmin, M. I. H. Mondal, Synthesis of Highly Substituted Carboxymethyl Cellulose Depending on Cellulose Particle size, Int. J. Biol, Macromol, Vol. 80, 2015, pp. 725-731.
[29] Standard Test Methods for Sodium Carboxymethylcellulose ASTM D1439-15, 2022, https://doi.org/10.1520/D1439-15R22.
[30] S. Zhang, F. Li, J. Yu, G. U. Li-xia, S. Zhang, Disolved State and Viscosity Properties of Cellulose in a NaOH Complex Solvent, Cellul, Chem, Technol., 2009, Vol. 43, No. 7-8, pp. 241-249.
[31] M. J. Nayef, Structure Rheology of Carboxymethyl Cellulose (CMC) Solutions, B.Sc. in Chemical Engineering, Nahrain University, 2006.
[32] S. Set, D. Ford, M. Kita, Effects of Metal Ions on Viscosity of Aqueous Sodium Carboxylmethylcellulose Solution and Development of Dropping Ball Method on Viscosity, J. Chem. Educ., Vol. 92, No. 5, 2015, pp. 946-949.
[33] X. Peng, S. Nie, X. Li, X. Huang, Q. Li, Characteristics of the Water and Alkali-Soluble Hemicellulose Fractionated by Sequential Acidification and Graded Ethanol from Sweet Maize Stems, Molecule., Vol. 24, 2019, pp. 212-221.
[34] N. Panchan, P. Wattanapan, S. Súnginchai, S. Roddecha, P. Dittanet, A. Seubsai, C. Niamnym, S. Devahastin, Optiminization of Syntheisis Conditions for Carboxymethyl Cellulose from Pineapple Leaf Waste using Microwave Assisted Heating and Its Application as a Food Thickener, BioResour., Vol. 16, No. 4, 2021, pp. 7684-7701.
[35] V. L. Pushpamalar, Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose from Sago Waste, Carbohydr, Polym., 2006, pp. 312-318.
[36] H. Zhao, F. Cheng, G. Li, J. Zhang, Optimization of a Process for Carboxymethyl Cellulose (CMC) Preparation in Mixed Solvents, Inter, J. Polym, Mater, Vol. 52, No. 9, 2003, pp. 749-59.
[37] S. Yuliasmi, N. Ginting, H. S. Wahyuni, R. T. Sigalingging, T. Sibarani, The Effect of Alkalization on Carboxymethil Cellulose Synthesis from Stem and Peel Cellulose of Banana, J. Medic. Sci, Vol. 7, No. 22, 2019, pp. 3874-3877.
[38] P. Yu, Y. Hou, H. Zhang, W. Zhang, S. Yang, Y. Ni, Characterization and Solubility Effects of the Distribution of Carboxymethyl Substituents Along the Carboxymethyl Cellulose Molecular Chain, BioResour., Vol. 14, No. 4, 2019,
pp. 8923-8934.
[39] A. H. Saputra, L. Qadhayna, A. B. Pitaloka, Synthesis and Characterization of Carboxymethyl Cellulose (CMC) from Water Hyacinth Using Ethanol-Isobutyl Alcohol Mixture as the Solvents, Int. J. Chem, Engineer, Appl., Vol. 5, No. 1, 2014, pp. 36-40.
[40] L. Xiquan, Q. Tingzhu, Q. Shaoqui, Kinetics of the Carboxymethylation of Cellulose in the Isopropyl Alcohol System, Acta Polym, Vol. 41, 1990, pp. 220-222.
[41] H. Almlöf, Extended Mercerization Prior to Carboxymethyl Cellulose Preparation, Licentiate thesis, Karlstad University Studies, Karlstad University, 2010, pp. 22.
[42] P. Rachtanapun, W. Klunklin, P. Jantrawut, N. Leksawasdi, K. Jantanasakulwong, Y. Phimolsiripol, P. Seesuriyachan, T. Chaiyaso, W. Ruksiriwanich, S. Phongthai, S. R. Sommano, W. Punyodom, A. Reungsang, T. M. P. Ngo, Effect of Monochloroacetic Acid on Properties of Carboxymethyl Bacterial Cellulose Powder and Film from Nata de Coco, Polymers, Vol. 13, No. 4, 2021, pp. 1-13.
[43] D. G. Coffey, D. A. Bell, A. Henderson, Cellulose and Cellulose Derivatives, Food Polysaccharides Their Appl, Second Ed., 2016, pp. 147-179, https://doi.org/10.1021/ja01613a114.