Le Minh Thuy, Dang Thi Lieu, Vu Duc Nam, Nguyen Thuy Ngoc, Duong Hong Anh, Tran Manh Tri

Main Article Content

Abstract

This study has focused on the development of the method LC-MS/MS to determine
2,2-bis(4-hydroxyphenyl)propane (bisphenol A: BPA) and 4,4’-dihydroxydiphenylmethane (bisphenol F: BPF) in indoor samples by using ultrasonication extraction and solid-phase extraction for preparation. The chromatographic procedure was performed on Kinetex C18 2.1 x 150 mm, 2.6 µm column with mobile phases: 2 mM HCOONH4 in MeOH and H2O:MeOH (90:10,…). The method quantification limits (MQL) of BPA and BPF were 15.0 and 12.0 ng/g, respectively. The mean recoveries were 80.4% for BPA and 93.8% for BPF (RSD<15%). The calibration curve for both BPA and BPF was linear over a concentration range of 1.0 to 500 ng/mL (R2 ≥ 0.999). Twenty-one samples were collected from private houses, laboratories, drug stores, and plastic recycling factories in Hanoi. BPA and BPF were found in dust samples with frequencies of 85.7 and 100%, respectively. Concentrations of BPA and BPF in dust samples were in the ranges of <MQL–2230 ng/g (mean: 626) and <MQL–149,000 ng/g (mean: 14,700), respectively. Based on the measured concentration, the human exposure to bisphenol via indoor dust ingestion was estimated for various age groups. The estimated exposure dose for people working at plastic recycling factories was the highest level (23.6 ng/kg-bw/day) but lower than the oral reference dose by the EPA and the European Food Safety Authority (50 µg/kg-bw/day).

Keywords: Bisphenol; Ultrasonication extraction; SPE extraction; LC-MS/MS; Indoor dust; Human exposure.*

References

[1] J. Xue, Y. Wan, K. Kannan, Occurrence of Bisphenols, Bisphenol A Diglycidyl Ethers (BADGEs) and Novolac Glycidyl Ethers (NOGEs) in Indoor Air from Albany, New York, USA and its Implications for Inhalation Exposure, Chemosphere, Vol. 151, 2016, pp. 1-8, https://doi.org/10.1016/j.chemosphere.2016.02.038.
[2] B. F. Healy, K. R. English, P. Jagals, P. D. Sly, Bisphenol A Exposure Pathways in Early Chilhood: Reviewing the Need for Improved Risk assessment models, Journal of Exposure Science and Environmental Epidemiology, Vol. 25, 2015, pp. 544-556, https://doi.org/10.1038/jes.2015.49.
[3] C. Liao, F. Liu, K. Kannan, Bisphenol S, A New Bisphenol Analogue in Paper Products and Currency Bills and Its Association with Bisphenol A Residues, Environmental Science and Technology, Vol. 46, 2012, pp. 6515-6522,
https://doi.org/10.1021/es300876n.
[4] C. Liao, K. Kannan, High Levels of Bisphenol A in Paper Currencies from Several Countries, and Implications for Dermal Exposure, Environmental Science and Technology, Vol. 45, 2011, pp. 6761-6768, https://doi.org/10.1021/es200977t.
[5] Y. Lv, C. Rui, Y. Dai, Q. Pang, Y. Li, R. Fan, S. Lu, Exposure of Children to BPA Through Dust and the Association of Urinary BPA and Triclosan with Oxidative Stress in Guangzhou, China, Environmental Science Processes Impacts, Vol. 18, 2016, pp. 1492-1499, https://doi.org/10.1039/c6em00472e.
[6] C. Liao, K. Kannan, Determination of Free and Conjugated Forms of Bisphenol A in Human Urine and Serum by Liquid Chromatography- Tandem Mass Spectrmetry, Environmental Science and Technology, Vol. 46, 2012, pp. 5003-5009, https://doi.org/10.1021/es300115a.
[7] S. N. Loganathan, K. Kannan, Occurrence of Bisphenol A in Indoor Dust from Two Locations in the Eastern United States and Implications for Human Exposures, Archives of Environmental Contamination and Toxicology, Vol. 61, 2011, pp. 68-73, https://doi.org/10.1007/s00244-010-9634-y.
[8] I. A. Wiraagni, M. A. Mohd, R. A. Rashid, D. E. B. M. Haron, Trace level detection of bisphenol A analogures and parabens by LC-MS/MS in human plasma from Malaysians, Biomed Research International, Vol. 2020, 2020,
https://doi.org/10.1155/2020/2581287.
[9] Z. Zhang, H. Alomirah, H. S. Cho, Y. F. Li, C. Liao, T. B. Minh, M. A. Mohd, H. Nakata, N. Ren, K. Kannan, Urinary Bisphenol A Concentrations and their Implications for Human Exposure in Several Asian Countries, Environmental Science and Technology, Vol. 45, 2011, pp. 7044-7050, https://doi.org/10.1021/es200976k.
[10] J. Ao, T. Yuan, Y. Ma, L. Gao, N. Ni, D. Li, Identification, Characteristics and Human Exposure Assessments of Triclosan, Bisphenol-A, and Four Commonly Used Organic UV Filters in Indoor Dust Collected from Shanghai, China, Chemosphere, Vol. 184, 2017, pp. 575-583, https://doi.org/10.1016/j.chemosphere.2017.06.033.
[11] M. Caban, P. Stepnowski, Determination of Bisphenol A in Size Fractions of Indoor Dust from Several Microenvironments, Microchemical Journal, Vol. 153, 2020, pp. 104392, https://doi.org/10.1016/j.microc.2019.104392.
[12] M. V. Gómez, E. H. Fernández, S. Lacorte, Differential Occurrence, Profilies and Uptake of Dust Contaminants in the Barcelona Urban Area, Science of the Total Environment, Vol. 648, 2019, pp. 1354-1370,
https://doi.org/10.1016/j.scitotenv.2018.08.058.
[13] W. Wang, K. O. Abualnaja, A. G. Asimakopoulos, A. Covaci, B. Gevao, B. J. Restrepo, T. A. Kumosani, G. Malarvannan, T. B. Minh, H. B. Moon, N. Nakata, R. K. Sinha, K. Kannan, A Comparative Assessment of Human Exposure to Tetrabromobisphenol A and Eight Bisphenols Including bisphenol A via Indoor Dust Ingestion in Twelve Countries, Environment International, Vol. 83, 2015, pp. 183-191, https://doi.org/10.1016/j.envint.2015.06.015.
[14] A. Ullah, M. Pizada, T. Afsar, S. Razak, A. Almajwal, S. Jahan, Effect of Bisphenol F, An Analog of Bisphenol A, on the Reproductive Functions of Male Rats, Environmental Health and Preventive Medicine, Vol. 24, 2019, pp. 24-41, https://doi.org/10.1186/s12199-019-0797-5.
[15] T. Zhang, S. Sun, K. Kannan, Blood and Urinary Bisphenol A Concentrations in Children, Adults, and Pregnant Women from China: Partitioning between Blood and Urine and Maternal and Fetal Cord Blood, Environmental Science and Technology, Vol. 47, 2013, pp. 4686-4694, https://doi.org/10.1021/es303808b.
[16] M. Liu, S. Jia, T. Dong, Y. Han, J. Xue, E. R. Wanjaya, M. Fang, The Occurrence of Bisphenol Plasticizers in Paired Dust and Urine Samples and Its Association with Oxidative Stress, Chemosphere, Vol. 216, 2019, pp. 472-478, https://doi.org/10.1016/j.chemosphere.2018.10.090.
[17] M. S. Nahar, C. Liao, K. Kannan, D. C. Dolinoy, Fetal Liver Bisphenol A Concentrations and Biotransformation Gene Expression Reveal Variable Exposure and Altered Capacity for Metabolism in Humans, Journal of Biochemical and Molecular Toxicology, Vol. 27, 2013, pp. 116-123, https://doi.org/10.1002/jbt.21459.
[18] X. Fan, C. Kubwabo, F. Wu, P. E. Rasmussen, Analysis of Bisphenol A, Alkylphenols, and Alkylphenol Ethoxylates in NIST SRM 2585 and Indoor House Dust by Gas Chromatography- Tandem Mass Spectrometry (GC/MS/MS), Journal of AOAC International, Vol. 102, 2019, pp. 246-254, https://doi.org/10.5740/jaoacint.18-0071.
[19] U. S. Food and Drug Administration, Bisphenl A (BPA): Use in Food Contact Application, 2012, https://www.fda.gov/newsevents/publichealthfocus/ucm064437/, 2012 (accessed on: February 25th 2022).
[20] Vietnam Ministry of Health, The National Technical Regulation on Safety and Hygiene for Plastic Packaging and Tools in Direct Contact with Food, QCVN 12-1:2011/BYT, 2011,
http://www.fsi.org.vn/van-ban-phap-ly/1027_3006/qcvn-12-12011byt-quy-chuan-ky-thuat-quoc-gia-ve-an-toan-ve-sinh-doi-voi-bao-bi-dung-cu-tiep-xuc-truc-tiep-voi-thuc-pham-bang-nhua-tong-hop.html/, 2011 (accessed on: February 25th 2022).
[21] T. Geens, L. Goeyens, K. Kannan, H. Neels, A. Covaci, Levels of Bisphenol-A in Thermal Paper Receipts from Belgium and Estimation of Human Exposure, Science of the Total Environment, Vol. 435-436, 2012, pp. 30-33,
https://doi.org/10.1016/j.scitotenv.2012.07.001.
[22] C. Liao, F. Liu, Y. Guo, H. B. Moon, H. Nakata, Q. Wu, K. Kannan, Occurrence of Eight Bisphenol Analogues: Indoor Dust from the United States and Several Asian Countries: Implications for Human Exposure, Environmental Science and Technology, Vol. 46, 2012, pp. 9138-9145, https://doi.org/10.1021/es302004w.
[23] X. L. Cao, I. Kosarac, S. Popovic, S. Zhou, D. Smith, R. Dabeka, LC-MS/MS Analysis of Bisphenol S and Five other Bisphenol in Total Diet Food Samples, Food Additives and Contaminants: Part A, Vol. 36, 2019, pp.1740-1747, https://doi.org/10.1080/19440049.2019.1643042.
[24] V. D. Nam, P. T. L. Anh, L. M. Thuy, N. L. Anh, N. T. Huong, P. T. L. Ha, D. T. V. Anh, L. Q. Huong, N. X. Hung, N. T. Thao, T. N. Phuong, B. C. Dinh, Analysis of Polycyclic Aromatic Hydrocarbon in Airborne Particulate Matter Samples by Gas Chromatography in Combination with Tandem Mass Spectrometry (GC-MS/MS), Journal of Analytical Methods in Chemistry, Vol. 2021, 2021, pp. 1-10, https://doi.org/10.1155/2021/6641326.
[25] H. Evard, A. Kruve, I. Leito, Tutorial on Estimating the Limit of Detection Using LC-MS Analysis, Part I: Theoretical Review, Analytica Chimica Acta, Vol. 942, 2016, pp. 23-39, https://doi.org/10.1016/j.aca.2016.08.043.
[26] A. Kruve, R. Rebane, K. Kipper, M. L. Oldekop, H. Evard, K. Herodes, P. Ravio, I. Leito, Tutorial Review on Validation of Liquid Chromatography-Mass Spectrometry Methods: Part I, Analytica Chimica Acta, Vol. 870, 2015, pp. 29-44, https://doi.org/10.1016/j.aca.2015.02.017.
[27] A. Kruve, R. Rebane, K. Kipper, M. L. Oldekop, H. Evard, K. Herodes, P. Ravio, L. Leito, Tutorial Review on Validation of Liquid Chromatography-Mass Spectrometry Methods: Part II, Analytica Chimica Acta, Vol. 870, 2015, pp. 8-28, https://doi.org/10.1016/j.aca.2015.02.016.
[28] F. T. Peters, O. H. Drummer, F. Musshoff, Validation of New Methods, Forensic Science International, Vol. 165, 2007, pp. 216-224, https://doi.org/10.1016/j.forsciint.2006.05.021.
[29] C. Liao, F. Liu, H. B. Moon, N. Yamashita, S. Yun, K. Kannan, Bisphenol Analogues in Sediments from Industrialized Areas in the United States, Japan and Korea: Spatial and Temporal Distributions, Environmental Science and Technology, Vol. 46, 2012, pp. 11558-11565,
https://doi.org/10.1021/es303191g.
[30] K. Larsson, C. H. Lindh, B. A. G. Jonsson, G. Giovanoulis, M. Bibi, M. Bottai, A. Bergstrom, M. Berglund, Phthalates, Non-phthalate Plasticizers and Bisphenols in Swedish Preschool Dust in Relation to Children’s Exposure, Environment International, Vol. 102, 2017, pp. 114-124, https://doi.org/10.1016/j.envint.2017.02.006.
[31] T. M. Tran, M. B. Tu, T. A. Kumosani, K. Kannan, Occurrence of Phthalate Diesters (phthalates), p-Hydroxybenzoic Acid Esters (parabens), Bisphenol A Diglycidyl Ether (BADGE) and their Derivatives in Indoor Dust from Vietnam: Implications for Exposure, Chemosphere, Vol. 144, 2016, pp. 1553-1559, https://doi.org/10.1016/j.chemosphere.2015.10.028.
[32] L. Wang, C. Liao, F. Liu, Q. Wu, Y. Guo, H. B. Moon, H. Nakata, K. Kannan, Occurrence and Human Exposure of p-Hydroxybenzoic Acid Esters (parabens), Bisphenol A Diglycidyl Ether (BADGE), and their Hydrolysis Products in Indoor Dust from the United States and Three East Asian Countries, Environmental Science and Technology, Vol. 46, 2012, pp. 11584-11593, https://doi.org/10.1021/es303516u.