Hoang Trong Duc, Le Tran Bao Tran, Tran Ngoc Thao, Chu Van Lanh, Nguyen Thi Thuy

Main Article Content

Abstract

In this paper, a new study is made on carbon tetrachloride (CCl4) infiltrated-photonic crystal fiber (PCF) with the difference between circular air-hole in the innermost layer and others in the square lattice to improve the optical properties. Based on numerical investigation of parameters such as dispersion, effective mode area, nonlinear coefficient, and confinement loss, we obtain a variety of dispersion including all-normal and anomalous dispersion, which is as small as 0.799 ps/nm.km at 1300 nm the pump wavelength. At the same time, the highest value of nonlinear coefficient 458.718 W–1.km–1 has been obtained, corresponding to the smallest value of 1.933 µm2 of the effective mode area at 1550 nm of fiber Ʌ = 1.0 µm, d1 = 0.8. We propose two optimal structures for directing in practical applications with supercontinuum generation (SC) in the short-wave infrared wavelength range.

Keywords: Photonic crystal fiber (PCF), square lattice, high nonlinearity coefficient, small effective mode area, low confinement loss, supercontinuum generation.

References

[1] J. C. Knight, Photonic Crystal Fibers, Nature, Vol. 424, 2003, pp. 847-851, https://doi.org/10.1038/nature01940.
[2] M. J. Gander, R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, P. S. J. Russell, Experimental Measurement of Group Velocity Dispersion in Photonic Crystal Fibre, Electronics Letters, Vol. 35, No. 1, 1999, pp. 63-64, https://doi.org/10.1049/el:19990055.
[3] P. S. Maji, and P. R Chaudhuri, Design of All-Normal Dispersion Based on Multi-material Photonic Crystal Fiber in IR Region for Broadband Supercontinuum Generation, Applied Optics, Vol. 54, No. 13, 2015, pp. 4042-4048, https://doi.org/10.1364/AO.54.004042.
[4] P. Li, K. Shi, Z. Liu, Optical Scattering Spectroscopy by using Tightly Focused Supercontinuum, Optics Express, Vol. 13, No. 12, 2005, pp. 9039-9044, https://doi.org/10.1364/OPEX.13.009039.
[5] K. Shi, P. Li, Z. Liu, Broadband Coherent Anti-Stokes Raman Scattering Spectroscopy in Supercontinuum Optical Trap, Applied Physics Letters, Vol. 90, No. 14, 2007, pp. 141116, https://doi.org/10.1063/1.2720295.
[6] C. Poudel, C. F. Kaminski, Supercontinuum Radiation in Fluorescence Microscopy and Biomedical Imaging Applications, Journal of the Optical Society of America B, Vol. 36, No. 2, 2019, pp. A139-A153, https://doi.org/10.1364/JOSAB.36.00A139.
[7] C. Chen, W. Shi, R. Reyes, V. X. Yang, Buffer-Averaging Super-Continuum Source Based Spectral Domain Optical Coherence Tomography for High Speed Imaging, Biomedical Optics Express, Vol. 9, No. 12, 2018, pp. 6529-6544, https://doi.org/10.1364/BOE.9.006529.
[8] S. Smirnov, J. A. Castanon, T. Ellingham, S. Kobtsev, S. Kukarin, S. Turitsyn, Optical Spectral Broadening and Supercontinuum Generation in Telecom Applications, Optical Fiber Technology, Vol. 12, No. 2, 2006, pp. 122-147, https://doi.org/10.1016/j.yofte.2005.07.004.
[9] N. Nishizawa, H. Kawagoe, M. Yamanaka, M. Matsushima, K. Mori, T. Kawabe, Wavelength Dependence of Ultrahigh-Resolution Optical Coherence Tomography using Supercontinuum for Biomedical Imaging, IEEE IEEE Journal of Selected Topics in Quantum Electronics, Vol. 25, No. 1, 2018, pp. 7101115, https://doi.org/10.1109/JSTQE.2018.2854595.
[10] K. E. Jahromi, Q. Pan, L. Høgstedt, S. M. Friis, A. Khodabakhsh, P. M. Moselund, F. J. Harren, Mid-infrared Supercontinuum-based Upconversion Detection for Trace Gas Sensing, Optics Express, Vol. 27, No. 17, 2019, pp. 24469-24480, https://doi.org/10.1364/OE.27.024469.
[11] J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H.Y. Tam, and P. K. A. Wai, Mid-infrared Octave-spanning Supercontinuum and Frequency Comb Generation in a Suspended Germanium-membrane Ridge Waveguide, Journal of Lightwave Technology, Vol. 35, No. 14, 2017, pp. 2994-3002, https://doi.org/10.1109/JLT.2017.2703644.
[12] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, J. Pniewski, Supercontinuum Generation in Benzene-filled Hollow-core Fibers, Optical Engineering, Vol. 60, No. 11, 2021,
pp. 116109, http://doi.org/10.1117/1.OE.60.11.116109.
[13] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, J. Pniewski, Supercontinuum Generation in Photonic Crystal Fibers Infiltrated with Nitrobenzene, Laser Physics, Vol. 30, No. 3, 2020, pp. 035105, https://doi.org/10.1088/1555-6611/ab6f09.
[14] Y. Guo, J. H. Yuan, K. Wang, Generation of Supercontinuum and Frequency Comb in a Nitrobenzene-core Photonic Crystal Fiber with All-normal Dispersion Profile, Optics Communications, Vol. 481, No. 4, 2021, pp. 126555, https://doi.org/10.1016/j.optcom.2020.126555.
[15] L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc, M. Trippenbach, R. Buczyński, and J. Pniewski, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Chloroform for Supercontinuum Generation, Laser Physics, Vol. 29, No. 7, 2019, pp. 075107-9, https://doi.org/10.1088/1555-6611/ab2115.
[16] L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, R. Buczyński, Supercontinuum Generation in Photonic Crystal Fibres with Core Filled with Toluene, Journal of Optics, Vol. 19, No. 12, 2017, pp. 125604, https://doi.org/10.1088/2040-8986/aa96bc.
[17] T. N. Thi, D. H. Trong, B. T. L. Tran, T. D. Van, L. C. Van, Optimization of Optical Properties of Toluene-core Photonic Crystal Fibers with Circle Lattice for Supercontinuum Generation, Journal of Optics, 2022, https://doi.org/10.1007/s12596-021-00802-y.
[18] R. Ahmad, M. Komanec, S. Zvanovec, Ultra-wideband Mid-infrared Supercontinuum Generation in Liquid-filled Circular Photonic Crystal Fiber, Journal of Nanophotonics, Vol. 14, No. 2, 2020, pp. 026016, https://doi.org/10.1117/1.JNP.14.026016.
[19] L. C. Van, H. V. Le, N. D. Nguyen, N. V. T. Minh, Q. H. Dinh, V. T. Hoang, T. N. Thi, B. C. Van, Modeling of Lead-bismuth Gallate Glass Ultra-flatted Normal Dispersion Photonic Crystal Fiber Infiltrated with Tetrachloroethylene for High Coherence Mid-infrared Supercontinuum Generation, Laser Physics, Vol. 32, 2022, pp. 055102-12,
https://doi.org/10.1088/1555-6611/ac599b.
[20] Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, D. X. Khoa,
M. Klimczak, R. Buczyński, Optimization of Optical Properties of Photonic Crystal Fibers Infiltrated with Carbon Tetrachloride for Supercontinuum Generation with Subnanojoule Femtosecond Pulses, Applied Optics, Vol. 57,
No. 14, 2018, pp. 3738-3746, https://doi:10.1364/ao.57.003738.
[21] V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Stępniewski, D. Pysz, M. Klimczak, S. Ertman, V. C. Long, T. R. Woliński, M. Trippenbach, K. D. Xuan, M. Śmietana, and R. Buczyński, Supercontinuum Generation in an All-normal Dispersion Large Core Photonic Crystal Fiber Infiltrated with Carbon Tetrachloride, Optical Materials Express, Vol. 9, No. 5, 2019, pp. 2264-2278, https://doi.org/10.1364/OME.9.002264.
[22] V. T. Hoang, R. Kasztelanic, G. Stępniewski, K. D. Xuan, V. C. Long, M. Trippenbach, M. Klimczak, R. Buczyński, J. Pniewski, Femtosecond Supercontinuum Generation around 1560 nm in Hollow-core Photonic Crystal Fibers Filled with Carbon Tetrachloride, Applied Optics, Vol. 59, No. 12, 2020, pp. 3720-3725, https://doi.org/10.1364/AO.385003.
[23] M. Z. Alam, M. I. Tahmid, S. T. Mouna, M. A. Islam, M. S. Alam, Design of a Novel Star Type Photonic Crystal Fiber for Mid-infrared Supercontinuum Generation, Optics Communications, Vol. 500, 2021, pp. 127322, https://doi.org/10.1016/j.optcom.2021.127322.
[24] J. Challenor, Toxicology of Solvents, Rapra Technology Ltd, 2002, ISBN: 1-85957-296-0, https://doi/10.1093/occmed/52.6.363-a.
[25] C. Z. Tan. Determination of Refractive Index of Silica Glass for Infrared Wavelengths by Ir Spectroscopy, Journal of Non-Crystalline Solids, Vol. 223, No. 1-2, 1998, pp. 158-163,
ttps://doi.org/10.1016/s0022-3093(97)00438-9.
[26] K. Moutzouris, M. Papamichael, S. C. Betsis, I. Stavrakas, G. Hloupis, D. Triantis, Refractive, Dispersive and Thermo-optic Properties of Twelve Organic Solvents in the Visible and Near-infrared, Applied Physics B, Vol. 116,
No. 3, 2013, pp. 617-622, https://doi.org/10.1007/s00340-013-5744-3.
[27] G. P. Agrawal, Nonlinear Fiber Optics, 5th Edition, Academic Press, Elsevier, 2013, ISBN: 978-0-12-397023-7, https://doi.org/10.1016/C2011-0-00045-5.
[28] K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic Dispersion Control in Photonic Crystal Fibers: Application to Ultra-flattened Dispersion, Optics Express, Vol. 11, No. 8, 2003, pp. 843-852, https://doi.org/10.1364/OE.11.000843.
[29] F. Begum, Y. Namihira, T. Kinjo, S. Kaijage, Supercontinuum Generation in Square Photonic Crystal Fiber with Nearly Zero Ultra-flattened Chromatic Dispersion and Fabrication Tolerance Analysis, Optics Communications, Vol. 284, No. 4, 2011, pp. 965-970, https://doi.org/10.1016/j.optcom.2010.10.029.