Cloning and Expression of 3 Chymotrypsin-like Protease of SARS-CoV-2 in E. coli using pET28a Vector
Main Article Content
Abstract
The 3 chymotrypsin-like protease (3CLpro) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is one of the primary targets for the development of antiviral drug therapies as it plays a critical role in viral replication. In this study, the gene encoding for SARS-CoV-2 3CLpro (918 bp) was amplified from the cDNA of the virus by polymerase chain reaction (PCR) and cloned into the pGEM-T vector. 3CLpro was then inserted into the expression vector pET28a at the end of the 6 histidine residue encoding sequence to form a fusion protein (6xHis-3CLpro). The 6xHis-3Clpro construct was successfully expressed in E. coli. The expression of 3CLpro was highest when E. coli BL21(DE3) RIL harboring pET28a-3CLpro vector was cultured in LB medium at 20 oC, induced by 1.0 mM Isopropyl thiogalactopyranosie (IPTG) when cell density measured by optical density at 600 nm (OD600) reached 0.7-0.8 and harvested after 24 hours of induction. The recombinant 3CLpro was purified by Ni-sepharose affinity chromatography under denaturation conditions. The purified 3CLpro showed to have a 41 kDa band on sodium dodesyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting using polyclonal anti-3CLpro antibody and hydrolyzed a fluorescent specific substrate of 3CLpro after renaturation.
References
[2] N. Chitranshi, V. K. Gupta, R. Rajput, A. Godinez, K. Pushpitha, T. Shen, M. Mirzaei, Y. You, D. Basavarajappa, V. Gupta, S. L. Graham, Evolving Geographic Diversity in SARS-CoV2 and in silico Analysis of Replicating Enzyme 3CLpro Targeting Repurposed Drug Candidates, Journal of Translational Medicine, Vol. 18, No. 1, 2020, pp. 278,
https://doi.org/10.1186/s12967-020-02448.
[3] S. Ulrich, E. B. Ekanayake, G. Otting, C. Nitsche, Main Protease Mutants of SARS-CoV-2 Variants Remain Susceptible to Nirmatrelvir, Bioorganic and Medicinal Chemistry Letters, Vol. 62, 2022, https://doi.org/10.1016/j.bmcl.2022.128629.
[4] D. W. Kneller, G. Phillips, H. M. O’Neill , R. Jedrzejczak, L. Stols, P. Langan, A. Joachimiak, L. Coates, A. Kovalevsky, Structural Plasticity of SARS-CoV-2 3CL Mpro Active Site Cavity Revealed by Room Temperature X-ray Crystallography, Nature Communication, Vol. 11, No. 3202, 2020, https://doi.org/10.1038/s41467-020-16954-7.
[5] A. D. Rathnayake, J. Zheng, Y. Kim, K. D. Perera, S. Mackin, D. K. Meyerholz, M. M. Kashipathy MM et al., 3C-like Protease Inhibitors Block Coronavirus Replication in vitro and Improve Survival in MERS-CoV-infected Mice, Science Translation Medicine, Vol. 12, No. 557, 2020. https://doi.org/10.1126/scitranslmed.abc5332.
[6] W. Vuong, C. Fischer M. B. Khan, M. J. Belkum, T. Lamer E. et al., Improved SARS-CoV-2 Mpro Inhibitors Based on Feline Antiviral Drug GC376: Structural Enhancements, Increased Solubility, and Micellar Studies, European Journal of Medicinal Chemistry, Vol. 222, No. 2021, https://doi.org/10.1016/j.ejmech.2021.113584.
[7] C. Coelho, G. Gallo, C. B. Campos, L. Hardy, M. Würtele, Biochemical Screening for SARS-CoV-2 Main Protease Inhibitors, PLOS ONE, Vol. 15, No. 10, 2020, https://doi.org/10.1371/journal.pone.0240079.
[8] W. Vuong, M. B. Khan, C. Fischer, E. Arutyunova, T. L. J. Shields, H. A. Saffran, R. T. McKay, M. J. V. Belkum et al., Feline Coronavirus Drug Inhibits the Main Protease of SARS-CoV-2 and Blocks Virus Replication, Nature Communications, Vol. 11, No. 4282, 2020, https://doi.org/10.1038/s41467-020-18096-2.
[9] R. Razali, V. K. Subbiah, C. Budiman, Technical Data of Heterologous Expression and Purification of SARS-CoV-2 Proteases Using Escherichia coli System, Data, Vol. 6, No. 99, 2021, https://doi.org/10.3390/data6090099.
[10] J. C. Milligan, T. U. Zeisner, G. Papageorgiou, D. Joshi, C. Soudy, R. Ulferts, M. Wu, C. T. Lim, K. W. Tan, F. Weissmann, B. Canal, R. Fujisawa, T. Deegan, H. Nagaraj, G. B. Todd, C. Basier, J. F. Curran, M. Howell, R. Beale,
K. Labib, N. O'Reilly, J. F.X. Diffley, Identifying SARS-CoV-2 Antiviral Compounds by Screening for Small Molecule Inhibitors of Nsp5 Main protease, The Biochemical Journal, Vol. 478, No. 13, 2021, pp. 2499-2515,
https://doi.org/10.1042/BCJ20210197.
[11] Haniyya, M. Ulfah, A. Riswoko, L. Mulyawati, T. Ernawati, I. Helianti, Production of Recombinant SARS-CoV-2 3CLprotease: The Key for the Development of Protease Inhibitors Screening Kit in Search of Potential Herb Cure for COVID-19, Earth and Environmental Science, Vol. 976, 2022, https://doi.org/10.1088/1755-1315/976/1/012051.
[12] T. J. Cross, G. R. Takahashi, E. M. Diessner, M. G. Crosby, V. Farahmand, S. Zhuang, C. T. Butts, R. W. Martin, Sequence Characterization and Molecular Modeling of Clinically Relevant Variants of the SARS-CoV 2 Main Protease Thomas, Biochemistry, Vol. 59, 2020, pp. 3741-3756, https://doi.org/10.1021/acs.biochem.0c00462.
[13] N. Krishnamoorthy, K. Fakhro, Identification of Mutation Resistance Coldspots for Targeting the SARS-CoV2 Main Protease, IUBMB Life, Vol. 73, No. 4, 2021, pp. 670-675, https://doi.org/10.1002/iub.2465.
[14] S. G. Elbager et al., High Risk Functional nsSNP in SARS-CoV-2 (2019-nCoV) Main Peptidase as Potential Targets to Structure-Based Drug Design: A Computational Approach, International Journal of Virology and Molecular Biology, Vol. 9, No. 2, 2020, pp. 17-34, https://doi.org/10.5923/j.ijvmb.20200902.01.
[15] L. T. Phan, V. T. Nguyen, K. T. L. Huynh, M. H. Dao et al., Clinical Features, Isolation, and Complete Genome Sequence of Severe Acute Respiratory Syndrome Coronavirus 2 from the First Two Patients in Vietnam, Journal of Medical Virology, Vol. 92, 2020, pp. 2209-2215, https://doi.org/10.1002/jmv.26075.
[16] H. L. T. Nguyen, X. H. Ho, T. H. T. Ngo, T. V. A. Nguyen, T. N. Phan, Cloning and Expression of Protease Encoding Gene of HIV Type 1 Isolated from Vietnam, Journal of Biotechnology, Vol. 8, No. 2, 2010, pp. 227-233.
[17] H. L. T. Nguyen, T. T. Nguyen, Q. T. Vu, H. T. Le, Y. Pham, P. T. Le, T. P. Bui, T. N. Phan, an Efficient Procedure for the Expression and Purification of HIV-1 Protease from Inclusion Bodies, Vol. 116, 2015, pp. 59-65,
https://doi.org/10.1016/j.pep.2015.07.011.