Flavone C-glycosides and Megastigmanes from the Leaves of Tinospora Sinensis
Main Article Content
Abstract
Using various chromatographic methods, five compounds including three flavone C-glycosides, isoviolanthin (1), isoorientin (2), isovitexin (3), and two megastigmanes excoecarioside A (4), corchoionoside C (5) were isolated from the leaves of Tinospora sinensis (Lour.) Merr. Their structures were identified based on spectroscopic methods and comparisons with those reported in the literature.
Keywords:
Tinospora sinensis, flavone C-glycoside, megastigmane.
References
[1] S. Hegde, M. Jayaraj, A Review of the Medicinal Properties, Phytochemical and Biological Active Compounds of Tinospora sinensis (Lour.) Merr. Journal of Biologically Active Products from Nature, Vol. 6, No. 2, 2016, pp. 84-94, https://doi.org/10.1080/22311866.2016.1185968.
[2] S. M. Ahmed, L. R. Manhas, V. Verma, R. K. Khajuria, Quantitative Determination of Four Constituents of Tinospora sps. by a Reversed-phase HPLC-UV-DAD Method, Broad-based Studies Revealing Variation In Content of Four Secondary Metabolites in the Plant from Different Eco-geographical Regions of India, Journal of Chromatographic Science, Vol. 44, No. 8, 2006, pp. 504-509, https://doi.org/10.1093/chromsci/44.8.504.
[3] M. Yonemitsu, N. Fukuda, T. Kimura, Studies on the Constituents of Tinospora sinensis, Separation and Structure of The New Phenolic Glycoside Tinosinen, Planta Medica, Vol. 59, No. 6, 1993, pp. 552-553,
https://doi.org/10.1055/s-2006-959759.
[4] W. Li, W. Koike, K. Liu, L. Lin, L. Fu, X. Chen, Y. Nikaido, Tamotsu, New Lignan Glucosides from the Stems of Tinospora sinensis, Chemical and Pharmaceutical Bulletin, Vol. 52, No. 5, 2004, pp. 638-640, https://doi.org/10.1248/cpb.52.638.
[5] W. Li, K. Fu, H. Koike, Kazuo, Structure and Absolute Configuration of Clerodane Diterpene Glycosides and a Rearranged Cadinane Sesquiterpene Glycoside from the Stems of Tinospora sinensis, Journal of Natural Products, Vol. 70, No. 12, 2007, pp. 1971-1976, https://doi.org/10.1021/np070367i.
[6] L. P. Dong, Chen, C. Xiang, Ni, W. Xie, B. B. Li, J. Z. Liu, H. Yang, A New Dinorclerone Diterpenoid Glycoside from Tinospora sinensis, Natural Product Research, Vol. 24, No. 1, 2010, pp. 13-17, https://doi.org/10.1080/14786410802253197.
[7] H. Jiang, Zhang, G. J. Liu, Y. F. Wang, H. S. Liang, Don, Clerodane Diterpenoid Glucosides from The Stems of Tinospora sinensis, Journal of Natural Products, Vol. 80, No. 4, 2017, pp. 975-982, https://doi.org/10.1021/acs.jnatprod.6b00976.
[8] S. X. Feng, M. F. Liu, X. Y. Wei, L. D. Lin, Triterpenoids and Flavonoids from The Leaves of Microcos paniculata, Journal of Tropical and Subtropical Botany, Vol. 16, No. 1, 2008, pp. 51-56, http://dx.doi.org/10.3969/j.issn.1005-3395.2008.1.008.
[9] D. C. Burns, D. A. Ellis, R. E. March, A Predictive Tool for Assessing 13C NMR Chemical Shifts of Flavonoids. Magnetic Resonance in Chemistry, Vol. 45, No. 10, 2007, pp. 835-845, https://doi.org/10.1002/mrc.2054.
[10] K. Ziqubu, Dludla, P. V. Joubert, E. Muller, C. J. F. Louw, J. Tiano, L. Nkambule, B. B. Kappo, A. P. M. Mbeje, E. Sithandiwe, Isoorientin: A Dietary Flavone with The Potential to Ameliorate Diverse Metabolic Complications, Pharmacological Research, Vol. 158, 2020, pp. 104867-104880, https://doi.org/10.1016/j.phrs.2020.104867.
[11] M. S. C. Pedras, P. B. Chumala, M. Suchy, Phytoalexins from Thlaspi arvense, a uWild Crucifer Resistant to Virulent Leptosphaeria maculans: Structures, Syntheses and Antifungal Activity, Phytochemistry, Vol. 65, No. 5, 2003, pp. 949-956, https://doi.org/10.1016/s0031-9422(03)00441-2.
[12] P. M. Giang, Son, P. Tong, Matsunami, Katsuyoshi Otsuka, Hideak, New Megastigmane Glucosides from Excoecaria cochinchinensis Lour. var. Cochinchinensis, Chemical and Pharmaceutical Bulletin, Vol. 53, No. 12, 2005, pp. 1600-1603, https://doi.org/10.1248/cpb.53.1600.
[13] İ. Çalış, K. U. A. Lorenzetto, P. A. Rüedi, Peter, (6S)-Hydroxy-3-oxo-α-ionol Glucosides from Capparis spinosa Fruits, Phytochemistry, Vol. 59, No. 4, 2002, pp. 451-457, https://doi.org/10.1016/S0031-9422(01)00399-5.
[2] S. M. Ahmed, L. R. Manhas, V. Verma, R. K. Khajuria, Quantitative Determination of Four Constituents of Tinospora sps. by a Reversed-phase HPLC-UV-DAD Method, Broad-based Studies Revealing Variation In Content of Four Secondary Metabolites in the Plant from Different Eco-geographical Regions of India, Journal of Chromatographic Science, Vol. 44, No. 8, 2006, pp. 504-509, https://doi.org/10.1093/chromsci/44.8.504.
[3] M. Yonemitsu, N. Fukuda, T. Kimura, Studies on the Constituents of Tinospora sinensis, Separation and Structure of The New Phenolic Glycoside Tinosinen, Planta Medica, Vol. 59, No. 6, 1993, pp. 552-553,
https://doi.org/10.1055/s-2006-959759.
[4] W. Li, W. Koike, K. Liu, L. Lin, L. Fu, X. Chen, Y. Nikaido, Tamotsu, New Lignan Glucosides from the Stems of Tinospora sinensis, Chemical and Pharmaceutical Bulletin, Vol. 52, No. 5, 2004, pp. 638-640, https://doi.org/10.1248/cpb.52.638.
[5] W. Li, K. Fu, H. Koike, Kazuo, Structure and Absolute Configuration of Clerodane Diterpene Glycosides and a Rearranged Cadinane Sesquiterpene Glycoside from the Stems of Tinospora sinensis, Journal of Natural Products, Vol. 70, No. 12, 2007, pp. 1971-1976, https://doi.org/10.1021/np070367i.
[6] L. P. Dong, Chen, C. Xiang, Ni, W. Xie, B. B. Li, J. Z. Liu, H. Yang, A New Dinorclerone Diterpenoid Glycoside from Tinospora sinensis, Natural Product Research, Vol. 24, No. 1, 2010, pp. 13-17, https://doi.org/10.1080/14786410802253197.
[7] H. Jiang, Zhang, G. J. Liu, Y. F. Wang, H. S. Liang, Don, Clerodane Diterpenoid Glucosides from The Stems of Tinospora sinensis, Journal of Natural Products, Vol. 80, No. 4, 2017, pp. 975-982, https://doi.org/10.1021/acs.jnatprod.6b00976.
[8] S. X. Feng, M. F. Liu, X. Y. Wei, L. D. Lin, Triterpenoids and Flavonoids from The Leaves of Microcos paniculata, Journal of Tropical and Subtropical Botany, Vol. 16, No. 1, 2008, pp. 51-56, http://dx.doi.org/10.3969/j.issn.1005-3395.2008.1.008.
[9] D. C. Burns, D. A. Ellis, R. E. March, A Predictive Tool for Assessing 13C NMR Chemical Shifts of Flavonoids. Magnetic Resonance in Chemistry, Vol. 45, No. 10, 2007, pp. 835-845, https://doi.org/10.1002/mrc.2054.
[10] K. Ziqubu, Dludla, P. V. Joubert, E. Muller, C. J. F. Louw, J. Tiano, L. Nkambule, B. B. Kappo, A. P. M. Mbeje, E. Sithandiwe, Isoorientin: A Dietary Flavone with The Potential to Ameliorate Diverse Metabolic Complications, Pharmacological Research, Vol. 158, 2020, pp. 104867-104880, https://doi.org/10.1016/j.phrs.2020.104867.
[11] M. S. C. Pedras, P. B. Chumala, M. Suchy, Phytoalexins from Thlaspi arvense, a uWild Crucifer Resistant to Virulent Leptosphaeria maculans: Structures, Syntheses and Antifungal Activity, Phytochemistry, Vol. 65, No. 5, 2003, pp. 949-956, https://doi.org/10.1016/s0031-9422(03)00441-2.
[12] P. M. Giang, Son, P. Tong, Matsunami, Katsuyoshi Otsuka, Hideak, New Megastigmane Glucosides from Excoecaria cochinchinensis Lour. var. Cochinchinensis, Chemical and Pharmaceutical Bulletin, Vol. 53, No. 12, 2005, pp. 1600-1603, https://doi.org/10.1248/cpb.53.1600.
[13] İ. Çalış, K. U. A. Lorenzetto, P. A. Rüedi, Peter, (6S)-Hydroxy-3-oxo-α-ionol Glucosides from Capparis spinosa Fruits, Phytochemistry, Vol. 59, No. 4, 2002, pp. 451-457, https://doi.org/10.1016/S0031-9422(01)00399-5.