Trieu Anh Trung, Pham Si Nguyen, Le Duc Thinh

Main Article Content

Abstract

Mucormycosis is a fungal infection caused by many species of fungi belonging to the Mucorales order, mainly in immunocompromised patients. Although rare, this disease has a high mortality rate, especially during and after the COVID-19 pandemic. Currently, there is no specific treatment for this disease. This study aims to identify the major genes involved in chitin synthesis - an important component of cell structure. The list of candidate genes was selected based on the database of the Mucor lusitanicus fungal genome and its transcriptome analysis under aerobic and anaerobic conditions. The candidate genes were analyzed for structure and function prediction using bioinformatics tools. The study identified two candidate genes encoding chitin synthase (chs) and one gene encoding chitin deacetylase (cda) with characteristic domain structures from a total of 70 related proteins. The results of this study provide a basis for experimental studies to analyze the functions of these proteins.

Keywords: Chitin, chitin synthase, chitin deacetylase, cell wall, mucormycosis, Mucor lusitanicus.

References

[1] K. A. Marr, R. A. Carter, F. Crippa, A. Wald, L. Corey, Epidemiology and Outcome of Mould Infections in Hematopoietic Stem Cell Transplant Recipients, Clin Infect Dis, Vol. 34, No. 7, 2002, pp. 909-917, https://doi.org/10.1086/339202.
[2] M. Richardson, The Ecology of the Zygomycetes and its Impact on Environmental Exposure, Clin Microbiol Infect, Vol. 15, No. 5, 2009, https://doi.org/10.1111/j.1469-0691.2009.02972.x.
[3] J. A. Ribes, C. L. V. Sams, D. J. Baker, Zygomycetes in Human Disease, Clin Microbiol Rev, Vol. 13, No. 2, 2000, pp. 236-301, https://doi.org/10.1128/cmr.13.2.236.
[4] L. L. Fernandez, M. Sanchis, P. Navarro-Rodríguez et al., Understanding Mucor circinelloides Pathogenesis by Comparative Genomics and Phenotypical Studies, Virulence, Vol. 9, No. 1, 2018, pp. 707-720, https://doi.org/ 10.1080/21505594.2018.1435249.
[5] F. E. Nicolás, S. T. Martínez, R. M. R. Vázquez, Two Classes of Small Antisense RNAs in Fungal RNA Silencing Triggered by Non-integrative Transgenes, EMBO J., Vol. 22, No. 15, 2023, pp. 3983-3991,
https://doi.org/10.1093/emboj/cdg384.
[6] T. A. Trieu, P. A. Nguyen, M. N. Le, H. N. Chu, Myosin-II Proteins are Involved in the Growth, Morphogenesis, and Virulence of the Human Pathogenic Fungus Mucor circinelloides, Front. Cell. Infect. Microbiol., Vol. 12, No. December, 2022, pp. 1-16, https://doi.org/10.3389/fcimb.2022.1031463.
[7] T. A. Trieu, M. I. N. Mendoza, C. P. Arques et al., RNAi-Based Functional Genomics Identifies New Virulence Determinants in Mucormycosis, PLoS Pathog., Vol. 13, No. 1, 2017, pp. 1-26,
https://doi.org/10.1371/journal.ppat.1006150.
[8] R. G. Rubio, H. C. D. Oliveira, J. Rivera, N. T. Contador, The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species, Front Microbiol, Vol. 10, 2020, https://doi.org/ 10.3389/fmicb.2019.02993.
[9] J. Liu, J. Dong, J. Gao et al., Three Chitin Deacetylase Family Members of Beauveria bassiana Modulate Asexual Reproduction and Virulence of Fungi by Mediating Chitin Metabolism and Affect Fungal Parasitism and Saprophytic Life, Microbiol Spectr, Vol. 11, No. 2, 2023, https://doi.org/ 10.1128/spectrum.04748-22.
[10] M. D. Lenardon, C. A. Munro, N. A. R. Gow, Chitin Synthesis and Fungal Pathogenesis, Curr Opin Microbiol, Vol. 13, No. 4, 2010, https://doi.org/ 10.1016/j.mib.2010.05.002.
[11] I. V. Grigoriev, R. Nikitin, S. Haridas et al., MycoCosm Portal: Gearing up for 1000 Fungal Genomes, Nucleic Acids Res, Vol. 42, No. D1, 2014, https://doi.org/10.1093/nar/gkt1183.
[12] I. V. Grigoriev, D. Cullen, S. B. Goodwin et al., Fueling the Future with Fungal Genomics, Mycology, Vol. 2, No. 3, 2011, https://doi.org/10.1080/21501203.2011.584577.
[13] B. Amos, C. Aurrecoechea, M. Barba et al., VEuPathDB: The Eukaryotic Pathogen, Vector and Host Bioinformatics Resource Center, Nucleic Acids Res, Vol. 50, No. D1, 2022, https://doi.org/10.1093/nar/gkab929.
[14] M. Homa, S. Ibragimova, C. Szebenyi, G. Nagy, N. Zsindely, L. Bodai, C. Vágvölgyi, G. Nagy, T. Papp, Differential Gene Expression of Mucor lusitanicus under Aerobic and Anaerobic Conditions, J. Fungi, Vol. 8, No. 4, 2022, https://doi.org/10.3390/jof8040404.
[15] C. P. Arques, M. I. N. Mendoza, L. Murcia, C. Lax, P. M. García, J. Heitman, F. E. Nicolás, V. Garre, Mucor Circinelloides Thrives Inside the Phagosome through an Atf-mediated Germination Pathway, MBio, Vol. 10, No. 1, 2019, https://doi.org/10.1128/mBio.02765-18.
[16] D. E. Blair, O. Hekmat, A. W. Schüttelkopf, B. Shrestha, K. Tokuyasu, S. G. Withers, D. M. F. V. Aalten, Structure and Mechanism of Chitin Deacetylase from the Fungal Pathogen Colletotrichum lindemuthianum, Biochemistry, Vol. 45, No. 31, 2006, https://doi.org/10.1021/bi0606694.