Zinc Ions Implantation on the Surface of Commercial Papers for Antibacterial and Antifungal Applications
Main Article Content
Abstract
Recently, the demand for novel food-packaging materials with antimicrobial properties has been increasing drastically. In this report, we attempt to implant zinc ions on the surface of commercial paper sheets by using a hydrothermal method to create hydrozincite nanoflake structures. The formation of the hydrozincite nanostructure was attributed to the adsorption of zinc-ion on the calcite’s surface, a common filler used in commercial paper sheets. The zinc-modified paper sheet (PZn) demonstrated a high efficiency to inhibit C. albicans and E. coli growth. It is attributed to the release of the Zn2+ ions into the acidic microbial medium. Along with the eco-friendliness, and biocompatible properties of the paper substrate, the PZn demonstrated a promising application in food packing.
References
2. Sun X, Wang J, Dong M, Zhang H, Li L, Wang L, Food spoilage, bioactive food fresh-keeping films and functional edible coatings: Research status, existing problems and development trend. Trends Food Sci Technol 119(2022): 122–132. https://doi.org/10.1016/j.tifs.2021.12.004
3. Huang T, Qian Y, Wei J, Zhou C, Polymeric Antibacterial and antifungal food packaging and its applications. Polymers (Basel) 11(2019): 560. https://doi.org/10.3390/polym11030560
4. Mangaraj S, Goswami ATK, Mahajan AP V, Applications of Plastic Films for Modified Atmosphere Packaging of Fruits and Vegetables: A Review. Food Eng Rev 1(2009): 133–158. https://doi.org/10.1007/s12393-009-9007-3
5. Sonia A, Priya Dasan K, Celluloses microfibers (CMF)/poly (ethylene-co-vinyl acetate) (EVA) composites for food packaging applications: A study based on barrier and biodegradation behavior. J Food Eng 118(2013): 78–89. https://doi.org/10.1016/j.jfoodeng.2013.03.020
6. Kanavouras A, Hernandez-Munoz P, Coutelieris FA, Packaging of Olive Oil: Quality Issues and Shelf Life Predictions. Food Rev Int 22(2007): 381–404. https://doi.org/10.1080/87559120600865149
7. Heinze T, El Seoud OA, Koschella A, Production and Characteristics of Cellulose from Different Sources. In: Cellul. Deriv. Springer, Cham, 2018, pp.pp 1–38. https://doi.org/10.1007/978-3-319-73168-1_1
8. Gao P, Cha R, Luo H, Xu Y, Zhang P, Han L, Wang X, Zhang Z, Jiang X, Development of antibacterial and antifungal oxidized cellulose film for active food packaging. Carbohydr Polym 278(2022): 118922. https://doi.org/10.1016/j.carbpol.2021.118922
9. Atta OM, Manan S, Ul-Islam M, Ahmed AAQ, Ullah MW, Yang G, Silver Decorated Bacterial Cellulose Nanocomposites as Antibacterial and antifungal Food Packaging Materials. ES Food Agrofor 6(2021): 12–26. https://doi.org/10.30919/esfaf590
10. Claudel M, Schwarte J V., Fromm KM, New Antibacterial and antifungal Strategies Based on Metal Complexes. Chem 2(2020): 849–899. https://doi.org/10.3390/chemistry2040056
11. Tartanson MA, Soussan L, Rivallin M, Pecastaings S, Chis C V., Penaranda D, Roques C, Faur C, Dynamic mechanisms of the bactericidal action of an Al2O3-TiO2-Ag granular material on an Escherichia coli strain. Appl Environ Microbiol 81(2015): 7135–7142. https://doi.org/10.1128/aem.01950-15
12. Park HJ, Kim JY, Kim J, Lee JH, Hahn JS, Gu MB, Yoon J, Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43(2009): 1027–1032. https://doi.org/10.1016/j.watres.2008.12.002
13. Arif R, Nayab PS, Ansari IA, Shahid M, Irfan M, Alam S, Abid M, Rahisuddin, Synthesis, molecular docking and DNA binding studies of phthalimide-based copper(II) complex: In vitro antibacterial, hemolytic and antioxidant assessment. J Mol Struct 1160(2018): 142–153. https://doi.org/10.1016/j.molstruc.2018.02.008
14. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK, The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antibacterial and antifungal and antibiofilm activity. J Clin Invest 117(2007): 877–888. https://doi.org/10.1172/jci30783
15. Cunnane SC, Zinc: Clinical and biochemical significance. CRC Press, Boca Raton, 2018. https://doi.org/10.1201/9781351077811
16. Yamgar RS, Nivid Y, Nalawade S, Mandewale M, Atram RG, Sawant SS, Novel Zinc(II) Complexes of Heterocyclic Ligands as Antibacterial and antifungal Agents: Synthesis, Characterisation, and Antibacterial and antifungal Studies. Bioinorg. Chem. Appl. 2014:. https://doi.org/10.1155/2014/276598
17. Sheikhshoaie I, Lotfi N, Sieler J, Krautscheid H, Khaleghi M, Synthesis, structures and antibacterial and antifungal activities of nickel(II) and zinc(II) diaminomaleonitrile-based complexes. Transit Met Chem 43(2018): 555–562. https://doi.org/10.1007/s11243-018-0241-5
18. Youssef AM, El-Sayed SM, El-Sayed HS, Salama HH, Dufresne A, Enhancement of Egyptian soft white cheese shelf life using a novel chitosan/carboxymethyl cellulose/zinc oxide bionanocomposite film. Carbohydr Polym 151(2016): 9–19. https://doi.org/10.1016/j.carbpol.2016.05.023
19. Shojaeiarani J, Shirzadifar A, Shine C, Reisi AM, Hybrid nanocomposite packaging films from cellulose nanocrystals, zinc sulfide quantum dots reinforced polylactic acid with fluorescent and antibacterial properties. Polym Eng Sci 62(2022): 1562–1570. https://doi.org/10.1002/pen.25944
20. Sarwar S, Chakraborti S, Bera S, Sheikh IA, Hoque KM, Chakrabarti P, The antibacterial and antifungal activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. Nanomedicine Nanotechnology, Biol Med 12(2016): 1499–1509. https://doi.org/10.1016/j.nano.2016.02.006
21. Dasari M, Rajasekaran PR, Iyer R, Kohli P, Calligraphic solar cells: Acknowledging paper and pencil. J Mater Res 31(2016): 2578–2589. https://doi.org/10.1557/jmr.2016.281
22. Jiao L, Ma J, Dai H, Preparation and Characterization of Self-Reinforced Antibacterial and Oil-Resistant Paper Using a NaOH/Urea/ZnO Solution. PLoS One 10(2015): e0140603. https://doi.org/10.1371/journal.pone.0140603
23. Jimoh OA, Ariffin KS, Hussin H Bin, Temitope AE, Synthesis of precipitated calcium carbonate: a review. Carbonates and Evaporites 33(2017): 331–346. https://doi.org/10.1007/s13146-017-0341-x
24. Nassar MY, Moustafa MM, Taha MM, Hydrothermal tuning of the morphology and particle size of hydrozincite nanoparticles using different counterions to produce nanosized ZnO as an efficient adsorbent for textile dye removal. RSC Adv 6(2016): 42180–42195. https://doi.org/10.1039/c6ra04855b
25. Hales MC, Frost RL, Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite. Polyhedron 26(2007): 4955–4962. https://doi.org/10.1016/j.poly.2007.07.002
26. Cole CGB, Roberts JJ, The Fluorescence of Gelatin and its Implications. Imaging Sci J 45(1997): 145–149. https://doi.org/10.1080/13682199.1997.11736396
27. Zhang Yuan W, Zhang Y, Nonconventional macromolecular luminogens with aggregation-induced emission characteristics. J Polym Sci Part A Polym Chem 55(2017): 560–574. https://doi.org/10.1002/pola.28420
28. Turianicová E, Kaňuchová M, Zorkovská A, Holub M, Bujňáková Z, Dutková E, Baláž M, Findoráková L, Balintová M, Obut A, CO2 utilization for fast preparation of nanocrystalline hydrozincite. J CO2 Util 16(2016): 328–335. https://doi.org/10.1016/j.jcou.2016.08.007
29. Szymańska-Chargot M, Cybulska J, Zdunek A, Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy. Sensors 11(2011): 5543–5560. https://doi.org/10.3390/s110605543
30. Donnelly FC, Purcell-Milton F, Framont V, Cleary O, Dunne PW, Gun’ko YK, Synthesis of CaCO3 nano- and micro-particles by dry ice carbonation. Chem Commun 53(2017): 6657–6660. https://doi.org/10.1039/c7cc01420a
31. Hales MC, Frost RL, Thermal analysis of smithsonite and hydrozincite. J Therm Anal Calorim 91(2008): 855–860. https://doi.org/10.1007/s10973-007-8571-0
32. Zachara JM, Kittrick JA, Harsh JB, The mechanism of Zn2+ adsorption on calcite. Geochim Cosmochim Acta 52(1988): 2281–2291. https://doi.org/10.1016/0016-7037(88)90130-5
33. Radovanovic N, Malagurski I, Levic S, Nesic A, Cabrera-Barjas G, Kalusevic A, Nedovic V, Pavlovic V, Dimitrijevic-Brankovic S, Influence of different concentrations of Zn-carbonate phase on physical-chemical properties of antibacterial and antifungal agar composite films. Mater Lett 255(2019): 126572. https://doi.org/10.1016/j.matlet.2019.126572
34. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, Hasan H, Mohamad D, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett 7(2015): 219. https://doi.org/10.1007/s40820-015-0040-x