Ngo Van Hoanh, Nguyen Manh Tuong, Nguyen Tran Hung, Le Trung Hieu, Le Huu Thanh, Pham Trung Kien, Le Thanh Hoang, Phung Xuan Thinh

Main Article Content

Abstract

The rGO material was modified with CoFe2O4 nanoparticles by a combination of aqueous precipitation at various pH conditions and reduction at high temperatures. The obtained rGO/CoFe2O4 composite has a porous structure with a substantial surface area and pore volume. At pH 10, the synthesized composite has a specific surface area of 270 m2/g, and the CoFe2O4 particle size is approximately 50 nm. As an electrode material in a supercapacitor system, the material has a specific capacitance of 383 F/g at a current density of 0.1 A/g, and after 1000 cycles, its specific capacitance remains at 91.5%. The obtained results demonstrate that the modification of rGO with CoFe2O4 nanoparticles is an advanced and effective approach to enhancing the electrochemical properties of materials.

Keywords: rGO aerogel, CoFe2O4, composite material, supercapacitor.

References

[1] L. H. Poudeh, M. Yildiz, Y. Menceloglu, B. S. Okan, Three-Dimensional Graphene-Based Structures: Production Methods, Properties, and Applications, in Handbook of Graphene Set, 2019, pp. 359-387,
https://doi.org/10.1002/9781119468455.ch11.
[2] Y. Fan, N. H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, C. M. Soukoulis, Graphene Plasmonics: A Platform for 2D Optics, Advanced Optical Materials, Vol. 7, 2019, pp. 1800537, https://doi.org/10.1002/adom.201800537.
[3] A. M. M. Hammam, M. E. Schmidt, M. Muruganathan, S. Suzuki, H. Mizuta, Sub-10 nm Graphene Nano-ribbon Tunnel Field-Effect Transistor, Carbon, Vol. 126, 2018, pp. 588-593, https://doi.org/10.1016/j.carbon.2017.09.091.
[4] S. Hemanth, A. Halder, C. Caviglia, Q. Chi, S. S. Keller, 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing, Biosensors (Basel), Vol. 8, 2018, pp. 1-9, https://doi.org/10.3390/bios8030070.
[5] S. P. Lee, G. A. M. Ali, H. H. Hegazy, H. N. Lim, K. F. Chong, Optimizing Reduced Graphene Oxide Aerogel for a Supercapacitor, Energy and Fuels, Vol. 35, 2021, pp. 4559-4569, https://doi.org/10.1021/acs.energyfuels.0c04126.
[6] B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Graphene-based Composites for Electrochemical Energy Storage, Energy Storage Materials, Vol. 24, 2020, pp. 22-51, https://doi.org/10.1016/j.ensm.2019.08.004.
[7] J. Zhao, J. Zhang, H. Yin, Y. Zhao, G. Xu, J. Yuan, X. Mo, J. Tang, F. Wang, Ultra-Fine Ruthenium Oxide Quantum Dots/Reduced Graphene Oxide Composite as Electrodes for High-Performance Supercapacitors, Nanomaterials, Vol. 12, 2022, pp. 1207-1210, https://doi.org/10.3390/nano12071210.
[8] Y. Li, L. Xu, J. Gao, X. Jin, Hydrothermal Fabrication of Reduced Graphene oxide/activated carbon/MnO2 Hybrids with Excellent Electrochemical Performance for Supercapacitors, RSC Adv., Vol. 7, 2017, pp. 39024-39033,
https://doi.org/10.1039/C7RA07056J.
[9] L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, C. Chen, Self-Assembled 3D Graphene-Based Aerogel with Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode, ChemSusChem, Vol. 8, 2015, pp. 2917-2926, https://doi.org/10.1002/cssc.201500355.
[10] Y. Wang, J. Guo, T. Wang et al., Mesoporous Transition Metal Oxides for Supercapacitors, Nanomaterials (Basel), Vol. 5, 2015, pp. 1667-1689, https://doi.org/10.3390/nano5041667.
[11] Z. Gao, L. Zhang, J. Chang, Z. Wang, D. Wu, F. Xu, Y. Guo, K. Jiang, ZnCo2O4 -reduced Graphene Oxide Composite with Balanced Capacitive Performance in Asymmetric Supercapacitors, Applied Surface Science,
Vol. 442, 2018, pp. 138-147, https://doi.org/10.1016/j.apsusc.2018.02.152.
[12] J. Pan, S. Li, F. Li, T. Yu, Y. Liu, L. Zhang, L. Ma, M. Sun, X. Tian, The NiFe2O4/NiCo2O4/GO Composites Electrode Material Derived from Dual-MOF for High Performance Solid-state Hybrid Supercapacitors, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 609, 2021, pp. 125650,
https://doi.org/10.1016/j.colsurfa.2020.125650.
[13] L. Zheng, L. Guan, G. Yang, C. Sanming, H. Zheng, One-pot synthesis of CoFe2O4 /rGO hybrid Hydrogels with 3D Networks for High Capacity Electrochemical Energy Storage Devices, RSC Advances, Vol. 8, 2018, pp. 8607-8614, https://doi.org/10.1039/C8RA00285A.
[14] I. Kotutha, T. Duangchuen, E. Swatsitang, W. Meewasana, J. Khajonrit, S. Maensiri, Electrochemical Properties of rGO/CoFe2O4 Nanocomposites for Energy Storage Application, Ionics, Vol. 25, 2019, pp. 5401-5409,
https://doi.org/10.1007/s11581-019-03114-1.
[15] B. Rani, N. K. Sahu, Electrochemical Properties of CoFe2O4 Nanoparticles and its rGO Composite for Supercapacitor, Diamond and Related Materials, Vol. 108, 2020, pp. 107978, https://doi.org/10.1016/j.diamond.2020.107978.
[16] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering, Vol. 184, 2017, pp. 469-477,
https://doi.org/10.1016/j.proeng.2017.04.118.
[17] Y. Cheng, S. Zhou, P. Hu, G. Zhao, Y. Li, X. Zhang, W. Han, Enhanced Mechanical, Thermal, and Electric properties of Graphene Aerogels via Supercritical Ethanol Drying and High-temperature Thermal Reduction, Scientific Reports, Vol. 7, 2017, pp. 1439, https://doi.org/10.1038/s41598-017-01601-x.
[18] A. Shanmugavani, R. K. Selvan, S. Layek, L. Vasylechko, S. Chinnappanadar, Influence of pH and Fuels on the Combustion Synthesis, Structural, Morphological, Electrical and Magnetic Properties of CoFe2O4 Nanoparticles, Materials Research Bulletin, Vol. 71, 2015, pp. 122-132, https://doi.org/10.1016/j.materresbull.2015.04.008.
[19] J. Thomas, N. Thomas, F. Girgsdies, M. Beherns, X. Huang, V. D. Sudheesh, V. Sebastian, Synthesis of Cobalt Ferrite Nanoparticles by Constant pH Co-precipitation and Their High Catalytic Activity in CO Oxidation, New Journal of Chemistry, Vol. 41, 2017, pp. 7356-7363, https://doi.org/10.1039/C7NJ00558J.
[20] P. Chandramohan, M. P. Srinivasan, S. Velmurugan, S. V. Narasimhan, Cation Distribution and Particle Size Effect on Raman Spectrum of CoFe2O4, Journal of Solid State Chemistry, Vol. 184, 2011, pp. 89-96,
https://doi.org/10.1016/j.jssc.2010.10.019.
[21] C. Lee, H. Chang, H. D. Jang, Preparation of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for Supercapacitors Application, Aerosol and Air Quality Research, Vol. 19, 2018, pp. 443-448,
https://doi.org/10.4209/aaqr.2018.10.0372.