Synthesis and Electrochemical Characterization of rGO/CoFe2O4 Nanocomposite Material
Main Article Content
Abstract
The rGO material was modified with CoFe2O4 nanoparticles by a combination of aqueous precipitation at various pH conditions and reduction at high temperatures. The obtained rGO/CoFe2O4 composite has a porous structure with a substantial surface area and pore volume. At pH 10, the synthesized composite has a specific surface area of 270 m2/g, and the CoFe2O4 particle size is approximately 50 nm. As an electrode material in a supercapacitor system, the material has a specific capacitance of 383 F/g at a current density of 0.1 A/g, and after 1000 cycles, its specific capacitance remains at 91.5%. The obtained results demonstrate that the modification of rGO with CoFe2O4 nanoparticles is an advanced and effective approach to enhancing the electrochemical properties of materials.
References
https://doi.org/10.1002/9781119468455.ch11.
[2] Y. Fan, N. H. Shen, F. Zhang, Q. Zhao, H. Wu, Q. Fu, Z. Wei, H. Li, C. M. Soukoulis, Graphene Plasmonics: A Platform for 2D Optics, Advanced Optical Materials, Vol. 7, 2019, pp. 1800537, https://doi.org/10.1002/adom.201800537.
[3] A. M. M. Hammam, M. E. Schmidt, M. Muruganathan, S. Suzuki, H. Mizuta, Sub-10 nm Graphene Nano-ribbon Tunnel Field-Effect Transistor, Carbon, Vol. 126, 2018, pp. 588-593, https://doi.org/10.1016/j.carbon.2017.09.091.
[4] S. Hemanth, A. Halder, C. Caviglia, Q. Chi, S. S. Keller, 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosensing, Biosensors (Basel), Vol. 8, 2018, pp. 1-9, https://doi.org/10.3390/bios8030070.
[5] S. P. Lee, G. A. M. Ali, H. H. Hegazy, H. N. Lim, K. F. Chong, Optimizing Reduced Graphene Oxide Aerogel for a Supercapacitor, Energy and Fuels, Vol. 35, 2021, pp. 4559-4569, https://doi.org/10.1021/acs.energyfuels.0c04126.
[6] B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D. Wang, S. Dou, Graphene-based Composites for Electrochemical Energy Storage, Energy Storage Materials, Vol. 24, 2020, pp. 22-51, https://doi.org/10.1016/j.ensm.2019.08.004.
[7] J. Zhao, J. Zhang, H. Yin, Y. Zhao, G. Xu, J. Yuan, X. Mo, J. Tang, F. Wang, Ultra-Fine Ruthenium Oxide Quantum Dots/Reduced Graphene Oxide Composite as Electrodes for High-Performance Supercapacitors, Nanomaterials, Vol. 12, 2022, pp. 1207-1210, https://doi.org/10.3390/nano12071210.
[8] Y. Li, L. Xu, J. Gao, X. Jin, Hydrothermal Fabrication of Reduced Graphene oxide/activated carbon/MnO2 Hybrids with Excellent Electrochemical Performance for Supercapacitors, RSC Adv., Vol. 7, 2017, pp. 39024-39033,
https://doi.org/10.1039/C7RA07056J.
[9] L. Xie, F. Su, L. Xie, X. Li, Z. Liu, Q. Kong, X. Guo, Y. Zhang, L. Wan, K. Li, C. Lv, C. Chen, Self-Assembled 3D Graphene-Based Aerogel with Co3O4 Nanoparticles as High-Performance Asymmetric Supercapacitor Electrode, ChemSusChem, Vol. 8, 2015, pp. 2917-2926, https://doi.org/10.1002/cssc.201500355.
[10] Y. Wang, J. Guo, T. Wang et al., Mesoporous Transition Metal Oxides for Supercapacitors, Nanomaterials (Basel), Vol. 5, 2015, pp. 1667-1689, https://doi.org/10.3390/nano5041667.
[11] Z. Gao, L. Zhang, J. Chang, Z. Wang, D. Wu, F. Xu, Y. Guo, K. Jiang, ZnCo2O4 -reduced Graphene Oxide Composite with Balanced Capacitive Performance in Asymmetric Supercapacitors, Applied Surface Science,
Vol. 442, 2018, pp. 138-147, https://doi.org/10.1016/j.apsusc.2018.02.152.
[12] J. Pan, S. Li, F. Li, T. Yu, Y. Liu, L. Zhang, L. Ma, M. Sun, X. Tian, The NiFe2O4/NiCo2O4/GO Composites Electrode Material Derived from Dual-MOF for High Performance Solid-state Hybrid Supercapacitors, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 609, 2021, pp. 125650,
https://doi.org/10.1016/j.colsurfa.2020.125650.
[13] L. Zheng, L. Guan, G. Yang, C. Sanming, H. Zheng, One-pot synthesis of CoFe2O4 /rGO hybrid Hydrogels with 3D Networks for High Capacity Electrochemical Energy Storage Devices, RSC Advances, Vol. 8, 2018, pp. 8607-8614, https://doi.org/10.1039/C8RA00285A.
[14] I. Kotutha, T. Duangchuen, E. Swatsitang, W. Meewasana, J. Khajonrit, S. Maensiri, Electrochemical Properties of rGO/CoFe2O4 Nanocomposites for Energy Storage Application, Ionics, Vol. 25, 2019, pp. 5401-5409,
https://doi.org/10.1007/s11581-019-03114-1.
[15] B. Rani, N. K. Sahu, Electrochemical Properties of CoFe2O4 Nanoparticles and its rGO Composite for Supercapacitor, Diamond and Related Materials, Vol. 108, 2020, pp. 107978, https://doi.org/10.1016/j.diamond.2020.107978.
[16] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W. W. Liu, C. H. Voon, Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence, Procedia Engineering, Vol. 184, 2017, pp. 469-477,
https://doi.org/10.1016/j.proeng.2017.04.118.
[17] Y. Cheng, S. Zhou, P. Hu, G. Zhao, Y. Li, X. Zhang, W. Han, Enhanced Mechanical, Thermal, and Electric properties of Graphene Aerogels via Supercritical Ethanol Drying and High-temperature Thermal Reduction, Scientific Reports, Vol. 7, 2017, pp. 1439, https://doi.org/10.1038/s41598-017-01601-x.
[18] A. Shanmugavani, R. K. Selvan, S. Layek, L. Vasylechko, S. Chinnappanadar, Influence of pH and Fuels on the Combustion Synthesis, Structural, Morphological, Electrical and Magnetic Properties of CoFe2O4 Nanoparticles, Materials Research Bulletin, Vol. 71, 2015, pp. 122-132, https://doi.org/10.1016/j.materresbull.2015.04.008.
[19] J. Thomas, N. Thomas, F. Girgsdies, M. Beherns, X. Huang, V. D. Sudheesh, V. Sebastian, Synthesis of Cobalt Ferrite Nanoparticles by Constant pH Co-precipitation and Their High Catalytic Activity in CO Oxidation, New Journal of Chemistry, Vol. 41, 2017, pp. 7356-7363, https://doi.org/10.1039/C7NJ00558J.
[20] P. Chandramohan, M. P. Srinivasan, S. Velmurugan, S. V. Narasimhan, Cation Distribution and Particle Size Effect on Raman Spectrum of CoFe2O4, Journal of Solid State Chemistry, Vol. 184, 2011, pp. 89-96,
https://doi.org/10.1016/j.jssc.2010.10.019.
[21] C. Lee, H. Chang, H. D. Jang, Preparation of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for Supercapacitors Application, Aerosol and Air Quality Research, Vol. 19, 2018, pp. 443-448,
https://doi.org/10.4209/aaqr.2018.10.0372.