Do Van Dang, Le Thanh Son, Nguyen Huy Hai

Main Article Content

Abstract

In this study, a series of CuWO4/g-C3N4 composites were synthesized using a facile construction method. The structural characteristics of the composites were examined using various techniques, including XRD, SEM, SEM-EDS, FT-IR, and UV-DRS. The photocatalytic performance of the CuWO4/g-C3N4 nanocomposites was evaluated in the degradation of methylene blue (MB) under visible light irradiation. The findings revealed that the CuWO4/g-C3N4 composite with a mass ratio of 10% CuWO4 displayed the highest efficiency (89%) in degrading MB during an 80-minute photodegradation process, which was consistent with the pseudo-first-order kinetics. These results clearly demonstrate that the formation of a Z-scheme CuWO4/g-C3N4 heterojunction significantly improves the photocatalytic efficiency by promoting rapid separation of electron-hole pairs and enhancing the redox capability. Additionally, the photodegradation efficiency remained above 85% even after four cycles, suggesting the stability of the catalyst.

Keywords: Z- scheme, CuWO4/g-C3N4, Methylene blue, photodegradation, visible light.

References

[1] X. Yuan, L. Jiang, J. Liang, Y. Pan, J. Zhang, H. Wang, L. Leng, Z. Wu, R. Guan, G. Zeng, In-situ Synthesis of 3D Microsphere-like In2S3/InVO4 Heterojunction with Efficient Photocatalytic Activity for Tetracycline Degradation under Visible Light Irradiation, Chemical Engineering Journal, Vol. 356, 2019, pp. 371-381,
https://doi.org/10.1016/J.CEJ.2018.09.079.
[2] C. Arab, R. E. Kurdi, D. Patra, Effect of pH on the Removal of Anionic and Cationic Dyes using Zinc Curcumin Oxide Nanoparticles as Adsorbent, Mater Chem Phys, Vol. 277, 2022, pp. 125504, https://doi.org/10.1016/J.MATCHEMPHYS.2021.125504.
[3] S. Sharan, P. Khare, R. Shankar, A. Tyagi, A. Khare, Development of 3D Network of Zn-oxide Nanorods Assisted with PbO2/Pb Electrode for Electrochemical Oxidation of Methylene Blue in Aqueous Phase, J. Taiwan Inst Chem Eng, Vol. 144, 2023, pp. 104739, https://doi.org/10.1016/J.JTICE.2023.104739.
[4] N. J. N. Nnaji, C. U. Sonde, O. L. Nwanji, G. C. Ezeh, A. U. Onuigbo, A. M. Ojukwu, P. C. Mbah, A. O. Adewumi, E. C. Unoka, J. O. Otedo, T. U. Onuegbu, Dacryodes Edulis Leaf Derived Biochar for Methylene Blue Biosorption, J. Environ Chem Eng, Vol. 11, 2023, pp. 109638, https://doi.org/10.1016/J.JECE.2023.109638.
[5] V. H. Huong, T. C. Nguyen, C. D. Sai, N. H. Pham, A. B. Ngac, T. B. Nguyen, H. V. Bui, V. P. Vu, B. T. Nguyen, L. V. Dang, T. T. H. Le, T. T. Nguyen, D. V. Do, Facile Synthesis of ZnO/Ag Nanostructure with Enhanced Photocatalytic Activity, ChemNanoMat, 2023, pp. e202300080, https://doi.org/10.1002/CNMA.202300080.
[6] A. Setiawan, L. R. Dianti, N. E. Mayangsari, D. R. Widiana, D. Dermawan, Removal of Methylene Blue using Heterogeneous Fenton Process with Fe Impregnated kepok Banana (Musa Acuminate L.) Peel Activated Carbon as Catalyst, Inorg Chem Commun, Vol. 152, 2023, pp. 110715, https://doi.org/10.1016/J.INOCHE.2023.110715.
[7] H. T. T. Duong, M. T. P. Duong, O. K. Nguyen, S. T. Le, L. V. Dang, B. T. Nguyen, D. V. Do, Photocatalytic Activity of Ti-SBA-15/C3N4 for Degradation of 2,4-Dichlorophenoxyacetic Acid in Water under Visible Light, J. Anal Methods Chem, 2022, https://doi.org/10.1155/2022/5531219.
[8] S. Faryad, U. Azhar, M. B. Tahir, W. Ali, M. Arif, M. Sagir, Spinach-derived Boron-doped
g-C3N4/TiO2 Composites for Efficient Photo-degradation of Methylene Blue Dye, Chemosphere, Vol. 320, 2023, pp. 138002, https://doi.org/10.1016/J.CHEMOSPHERE.2023.138002.
[9] I. F. Waheed, M. A. Hamad, K. A. Jasim, A. J. Gesquiere, Degradation of Methylene Blue using a Novel Magnetic CuNiFe2O4/g-C3N4 Nanocomposite as Heterojunction Photocatalyst, Diam Relat Mater, Vol. 133, 2023, pp. 109716,https://doi.org/10.1016/J.DIAMOND.2023.109716.
[10] C. Yue, J. Jiang, M. Li, X. Wang, T. Li, Z. Zhao, S. Dong, Accelerating the Peroxymonosulfate Activation and Charge Transfer by Construction of Fermi Energy Level-matched CoWO4/g-C3N4 Photocatalyst for Typical Antibiotics Degradation, Sep Purif Technol, Vol. 301, 2022, pp. 122020, https://doi.org/10.1016/J.SEPPUR.2022.122020.
[11] S. Sahoo, A. Behera, S. Mansingh, B. Tripathy, K. Parida, Facile Construction of CoWO4 Modified g-C3N4 Nanocomposites with Enhanced Photocatalytic Activity under Visible Light Irradiation, Mater Today Proc, Vol. 35, 2021, pp. 193-197, https://doi.org/10.1016/J.MATPR.2020.04.246.
[12] V. Vinesh, M. Preeyanghaa, T. R. N. Kumar, M. Ashokkumar, C. L. Bianchi, B. Neppolian, Revealing the Stability of CuWO4/g-C3N4 Nanocomposite for Photocatalytic Tetracycline Degradation from the Aqueous Environment
and DFT Analysis, Environ Res, Vol. 207, 2022, pp. 112112, https://doi.org/10.1016/J.ENVRES.2021.112112.
[13] J. Anupriya, R. Rajakumaran, S. M. Chen, R. Karthik, J. V. Kumar, J. J. Shim, P. M. Shafi, J. W. Lee, Raspberry-like CuWO4 Hollow Spheres Anchored on Sulfur-doped g-C3N4 Composite: An Efficient Electrocatalyst for Selective Electrochemical Detection of Antibiotic Drug Nitrofurazone, Chemosphere, Vol. 296, 2022, pp. 133997,
https://doi.org/10.1016/J.CHEMOSPHERE.2022.133997.
[14] R. Gupta, B. Boruah, J. M. Modak, G. Madras, Kinetic Study of Z-scheme C3N4/CuWO4 Photocatalyst Towards Solar Light Inactivation of Mixed Populated Bacteria, J. Photochem Photobiol A Chem, Vol. 372, 2019, pp. 108-121, https://doi.org/10.1016/J.JPHOTOCHEM.2018.08.035.
[15] S. Zhou, Y. Wang, G. Zhao, C. Li, L. Liu, F. Jiao, Enhanced Visible Light Photocatalytic Degradation of Rhodamine B by Z-scheme CuWO4/g-C3N4 Heterojunction, Journal of Materials Science: Materials in Electronics,
Vol. 32 2021, pp. 2731-2743, https://doi.org/10.1007/S10854-020-05003-0.
[16] N. T. T. Truc, T. D. Pham, D. V. Thuan, L. T. Son, D. T. Tran, M. V. Nguyen, V. N. Nguyen, N. M. Dang, H. T. Trang, Superior Activity of Cu-NiWO4/g-C3N4 Z Direct System for Photocatalytic Decomposition of VOCs in Aerosol under Visible Light, J. Alloys Compd, Vol. 798, 2019, pp. 12-18, https://doi.org/10.1016/J.JALLCOM.2019.05.236.
[17] N. T. T. Truc, T. D. Pham, M. V. Nguyen, D. V. Thuan, D. Q. Trung, P. Thao, H. T. Trang, V. N. Nguyen, D. T. Tran, D. N. Minh, N. T. Hanh, H. M. Ngoc, Advanced NiMoO4/g-C3N4 Z-scheme Heterojunction Photocatalyst for Efficient Conversion of CO2 to Valuable Products, J. Alloys Compd, Vol. 842, 2020, pp. 155860, https://doi.org/10.1016/J.JALLCOM.2020.155860.
[18] N. T. Thanh Truc, N. T. Hanh, M. V. Nguyen, N. T. P. L. Chi, N. V. Noi, D. T. Tran, M. N. Ha, D. Q. Trung, T. D. Pham, Novel Direct Z-scheme Cu2V2O7/g-C3N4 for Visible Light Photocatalytic Conversion of CO2 into Valuable Fuels, Appl Surf Sci, Vol. 457, 2018, pp. 968-974, https://doi.org/10.1016/J.APSUSC.2018.07.034.
[19] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and Their use as Metal-free Catalysts, J. Mater Chem, Vol. 18, 2008, pp. 4893-4908, https://doi.org/10.1039/B800274F.