Facile Construction of Silver Decorated on Carbon Nanotube in Natural Rubber and Polyethylene Blend for Antibacterial Activity
Main Article Content
Abstract
The study described the preparation of composite material through the dispersion of carbon nanotubes (CNTs) decorated with silver nanoparticles (Ag NPs) in the matrix of blending natural rubber (NR) and polyethylene (PE), for use as an antibacterial agent. The FESEM results indicated the uniform and defect-free surface of the synthesized composites. The mechanical properties of synthesized composite improved with a 65% increase in tensile strength, a 38% increase in elongation, and a 40% increase in hardness compared to the original NR/PE blend materials. Although the addition of CNTs-Ag NPs did not considerably affect the thermal stability of the NR/PE blend, it was found to prevent E. coli bacterial growth by 35%. This opens up new possibilities for the use of the composite in a variety of applications, particularly in the field of public health and wellness.
References
[2] A. S. Hashim, S. K. Ong, Study on Polypropylene/natural Rubber Blend with Polystyrene-modified Natural Rubber as Compatibilizer, Polym Int, Vol. 51, 2002, pp. 611-616, https://doi.org/10.1002/PI.920.
[3] M. S. Jamil, I. Ahmad, I. Abdullah, Effects of Rice Husk Filler on the Mechanical and Thermal Properties of Liquid Natural Rubber Compatibilized High-density Polyethylene/natural Rubber Blends, Journal of Polymer Research, Vol. 13, 2006, pp. 315-321, https://doi.org/10.1007/S10965-005-9040-8.
[4] H. Ismail, M. N. Nasaruddin, H. D. Rozman, The Effect of Multifunctional Additive in White Rice Husk Ash Filled Natural Rubber Compounds, Eur, J. Polym, Vol. 35, 1999, pp. 1429, https://doi.org/10.1016/s0014-3057(98)00223-7.
[5] S. Kiatkamjornwong, S. Thinakorn, P. Tasakorn, Foaming Conditions of High Density Polyethylene-natural Rubber Blends, Vol. 29, 2013, pp. 177-186, https://doi.org/10.1179/146580100101540932.
[6] J. M. Schnorr, T. M. Swager, Emerging Applications of Carbon Nanotubes, Chemistry of Materials, Vol. 23, 2011, pp. 646-657, https://doi.org/10.1021/CM102406H/ASSET/IMAGES/MEDIUM/CM-2010-02406H_0008.GIF.
[7] A. V. H. Herrera, M. A. G. Curbelo, J. H. Borges, M. A. R. Delgado, Carbon Nanotubes Applications in Separation Science: A Review, Anal Chim Acta, Vol. 734, 2012, pp. 1-30, https://doi.org/10.1016/J.ACA.2012.04.035.
[8] M. F. L. D. Volder, S. H. Tawfick, R. H. Baughman, A. J. Hart, Carbon Nanotubes: Present and Future Commercial Applications, Science, Vol. 339, 2013, pp. 535-539, https://doi.org/10.1126/SCIENCE.1222453/SUPPL_FILE/DEVOLDER.SM.PDF.
[9] V. N. Popov, Carbon Nanotubes: Properties and Application, Materials Science and Engineering: R: Reports, Vol. 43, 2004, 61-102, https://doi.org/10.1016/J.MSER.2003.10.001.
[10] M. D. Frogley, D. Ravich, H. D. Wagner, Mechanical Properties of Carbon Nanoparticle-reinforced Elastomers, Compos Sci Technol, Vol. 63, 2003, pp. 1647-1654, https://doi.org/10.1016/S0266-3538(03)00066-6.
[11] A. D. Falco, S. Goyanes, G. H. Rubiolo, I. Mondragon, A. Marzocca, Carbon Nanotubes as Reinforcement of Styrene-butadiene Rubber, Appl Surf Sci, Vol. 254, 2007, pp. 262-265, https://doi.org/10.1016/J.APSUSC.2007.07.049.
[12] D. Nakabayashi, A. L. D. Moreau, V. R. Coluci, D. S. Galvão, M. A. Cotta, D. Ugarte, Carbon Nanotubes as Reinforcement Elements of Composite Nanotools, Nano Lett, Vol. 8, 2008, pp. 842-847,
https://doi.org/10.1021/NL0729633/SUPPL_FILE/NL0729633SI20080219_070316.PDF.
[13] J. N. Coleman, U. Khan, Y. K. Gun’ko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Advanced Materials, Vol. 18, 2006, pp. 689-706, https://doi.org/10.1002/ADMA.200501851.
[14] D. Qian, E. C. Dickey, R. Andrews, T. Rantell, Load Transfer and Deformation Mechanisms in Carbon Nanotube-polystyrene Composites, Appl Phys Lett, Vol. 76, 2000, pp. 2868-2870, https://doi.org/10.1063/1.126500.
[15] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, L. Forró, Elastic and Shear Moduli of Single-walled Carbon Nanotube Ropes, Phys Rev Lett, Vol. 82, 1999, pp. 944, https://doi.org/10.1103/PhysRevLett.82.944.
[16] S. Tang, S. Vongehr, X. Meng, Carbon Spheres with Controllable Silver Nanoparticle Doping, Journal of Physical Chemistry C, Vol. 114, 2010, pp. 977-982, https://doi.org/10.1021/JP9102492/ASSET/IMAGES/MEDIUM/JP-2009-102492_0009.GIF.
[17] G. Viswanathan, N. Chakrapani, H. Yang, B. Wei, H. Chung, K. Cho, C. Y. Ryu, P. M. Ajayan, Single-step in Situ Synthesis of Polymer-grafted Single-wall Nanotube Composites, J. Am Chem Soc, Vol. 125, 2003, pp. 9258-9259,
https://doi.org/10.1021/JA0354418/SUPPL_FILE/JA0354418SI20030611_034341.PDF.
[18] S. Qin, D. Qin, W. T. Ford, D. E. Resasco, J. E. Herrera, Polymer Brushes on Single-walled Carbon Nanotubes by Atom Transfer Radical Polymerization of n-Butyl Methacrylate, J. Am Chem Soc, Vol. 126, 2004, pp. 170-176,
https://doi.org/10.1021/JA037937V/ASSET/IMAGES/MEDIUM/JA037937VN00001.GIF.
[19] H. Kong, C. Gao, D. Yan, Functionalization of Multiwalled Carbon Nanotubes by Atom Transfer Radical Polymerization and Defunctionalization of the Products, Macromolecules, Vol. 37, 2004, pp. 4022-4030,
https://doi.org/10.1021/MA049694C.
[20] J. Liu, D. A. Sonshine, S. Shervani, R. H. Hurt, Controlled Release of Biologically Active Silver from Nanosilver Surfaces, ACS Nano, Vol. 4, 2010, pp. 6903-6913, https://doi.org/10.1021/NN102272N/SUPPL_FILE/NN102272N_SI_001.PDF.
[21] E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra, Toxicity of Silver Nanoparticles to Chlamydomonas Reinhardtii, Environ Sci Technol, Vol. 42, 2008, pp. 8959-8964,
https://doi.org/10.1021/ES801785M/SUPPL_FILE/ES801785M_SI_001.PDF.
[22] D. H. Anh, K. Dumri, N. T. Anh, W. Punyodom, P. Rachtanapun, Facile Fabrication of Polyethylene/silver Nanoparticle Nanocomposites with Silver Nanoparticles Traps and Holds Early Antibacterial Effect, J. Appl Polym Sci, Vol. 133, 2016, https://doi.org/10.1002/APP.43331.
[23] Y. N. Chang, J. L. Gong, G. M. Zeng, X. M. Ou, B. Song, M. Guo, J. Zhang, H. Y. Liu, Antimicrobial Behavior Comparison and Antimicrobial Mechanism of Silver Coated Carbon Nanocomposites, Process Safety and Environmental Protection, Vol. 102, 2016, pp. 596-605, https://doi.org/10.1016/J.PSEP.2016.05.023.
[24] C. Nie, C. Cheng, L. Ma, J. Deng, C. Zhao, Mussel-inspired Antibacterial and Biocompatible Silver-carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization, Langmuir, Vol. 32, 2016, pp. 5955-5965, https://doi.org/10.1021/ACS.LANGMUIR.6B00708/SUPPL_FILE/LA6B00708_SI_001.PDF.
[25] W. Yuan, G. Jiang, J. Che, X. Qi, R. Xu, M. W. Chang, Y. Chen, S. Y. Lim, J. Dai, M. B. C. Park, Deposition of Silver Nanoparticles on Multiwalled Carbon Nanotubes Grafted with Hyperbranched Poly(amidoamine) and Their Antimicrobial Effects, Journal of Physical Chemistry C, Vol. 112, 2008, pp. 18754-18759, https://doi.org/10.1021/JP807133J.