Nguyen Duc Hieu, Tu Binh Minh, Hoang Quoc Anh

Main Article Content

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are typical organic pollutants of great concern due to their negative impacts on environmental and human health. The less polar and hydrophobic nature of PAHs is responsible for their ability to adsorb onto suspended particles and to accumulate in sediments. In this study, surface sediment samples were collected in the South Central Coast of Binh Dinh Province, Vietnam to determine concentrations of 16 PAHs. The sediment samples were directly ultrasound extracted with a mixture of acetone/hexane (1:1) and toluene. The extract was purified on a chromatographic column containing activated silica gel with dichloromethane/hexane (1:3) as elution solvent. PAHs were separated and quantified on a gas chromatography/mass spectrometry (GC/MS) system with a DB-5ms column. The MS detector was operated in electron impact ionization (EI) mode and ion selective monitoring (SIM) mode. Levels of 16 PAHs ranged from 33.1 to 196 (mean 80.0) nanograms per gram sediment (ng/g). In all sediment samples, proportions of high molecular weight PAHs (4-6 rings, 63–88%) were higher than those of low molecular weight PAHs (2-3 rings, 12–37%), indicating that emission sources are mainly related to thermal processes rather than petroleum products. The most predominant substances were: Pyr (14% ± 3%), Flt (12% ± 3%), Phe (10% ± 3%), Chr (9% ± 2%), and BaP (9% ± 3%). Further studies on the pollution status of PAHs and their derivatives in Vietnamese marine environments are essential.

Keywords: PAHs, sediment, coastal area, South Central Coast, Vietnam.

References

[1] K. Srogi, Monitoring of Environmental Exposure to Polycyclic Aromatic Hydrocarbons: A Review, Environ, Chem. Lett., Vol. 5, 2007, pp. 169-195.
[2] A. S. Tsibart, A. N. Gennadiev, Polycyclic Aromatic Hydrocarbons in Soils: Sources, Be-Havior, and Indication Significance (a Review), Eurasian Soil Sci., Vol. 46, 2013, pp. 728-741.
[3] L. H. Keith, W. A. Telliard, Priority pollutants I - a Perspective View, Environ Sci Technol, Vol. 13, 1979, pp. 416-423.
[4] H. I. A. Shafy, M. S. M. Mansour, A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impacts, Effect on Human Health and Remediation, Egypt. J. Pet., Vol. 25, 2016, pp. 107-123.
[5] K. Sun, Y. Song, F. He, M. Jing, J. Tang, R. Liu, A Review of Human and Animals Exposure to Polycyclic Aromatic Hydrocarbons: Health Risk and Adverse Effects, Photo-Induced Toxicity and Regulating Effect of Microplastics, Sci. Total Environ., Vol. 773, 2021, pp. 145403.
[6] Y. V. Pashin, L. M. Bakhitova, Mutagennic and Carcinogenic Properties of Polycyclic Aromatic Hydrocarbons, Environ, Health Perspect., Vol. 30, 1979, pp. 185-189.
[7] J. A. McGrath, N. Joshua, A. S. Bess, T. F. Parkerton, Review of Polycyclic Aromatic Hydrocarbons (PAHs) Sediment Quality Guidelines for the Protection of Benthic Life, Integr, Environ, Assess, Manag., Vol. 15, 2019, pp. 505-518.
[8] M. T. Anh, L. M. Triet, J. J. Sauvain, J. Tarradellas, PAH Contamination Levels in Air Particles and Sediments of Ho Chi Minh City, Viet Nam, Bull, Environ, Contam, Toxicol., Vol. 63, 1999, pp. 728-735.
[9] M. Kishida, K. Imamura, Y. Maeda, T. T. N. Lan, N. T. P. Thao, P. H. Viet, Distribution of Persistent Organic Pollutants a Polycyclic Aromatic Hydrocarbons in Sediment Samples from Vietnam, J. Healthy Sci., Vol. 53, 2007,
pp. 291-301.
[10] N. T. Q. Hoa, H. Q. Anh, N. M. Tue, N. T. Trung, L. N. Da, T. V. Quy, N. T. A. Huong, G. Suzuki, S. Takahashi, S. Tanabe, P. C. Thuy, P. T. Dau, P. H. Viet, L. H. Tuyen, Sci. Total Eviron., Vol. 709, 2020, pp. 135852.
[11] A. Q. Hoang, S. Takahashi, N. D. Le, T. T. H. Hoang, T. T. Duong, T. M. H. Pham, T. D. Nguyen, T. X. B. Phung, T. A. H. Nguyen, H. T. Le, M. T. Nguyen, M. B. Tu, Y. T. H. Nguyen, T. M. L. Nguyen, V. P. Phung, T. P. Q. Le, Unsubstituted and Methylated PAHs in Surface Sediment of Urban Rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, Profiles, Sources, and Ecological Risk Assessment, Bull, Environ, Contam, Toxicol., Vol. 107, 2021,
pp. 475-486.
[12] P. T. Kha, Polycyclic Aromatic Hydrocarbons (PAHs) in Coastal Sediments in the North of Vietnam, J. Mar. Sci. Technol., Vol. 13, 2013, pp. 284-288.
[13] W. Shi, M. Xu, Q. Liu, S. Xie, Polycyclic Aromatic Hydrocarbons in Seawater, Surface Sediment, and Marine Organisms of Haizhou Bay in Yellow Sea, China: Distribution, Source Apportionment, and Health Risk Assessment, Mar. Pollut. Bull., Vol. 174, 2022, pp. 113280.
[14] U. H. Yim, S. H. Hong, W. J. Shim, Distribution and Characteristics of PAHs in Sediments from the Marine Environment of Korea, Chemosphere, Vol. 68, 2007, pp. 85-92.
[15] A. Q. Hoang, T. H. Le, M. B. Tu, S. Takahashi, Characterization of Unsubstituted and Methylated Polycyclic Aromatic Hydrocarbons and Screening of Potential Organic Compounds in Solid Waste and Environmental Samples by Gas Chromatography-Mass Spectrometry, J. Environ, Chem., Vol. 30, 2020, pp. 82-93.
[16] M. B. Yunker, R. W. Macdonald, R. Vingazan, R. H. Mitchell, D. Goyette, S. Sylvestre, PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition, Org. Geochem., Vol. 33, 2002, pp. 489-515.
[17] I. C. T. Nisbet, P. K. Lagoy, Toxic Equivalency Factors (TEFs) for Polycyclic Aromatic Hydrocarbons (PAHs), Regul, Toxicol, Pharmacol., Vol. 16, 1992, pp. 290-300.