Variable Temperature NMR Experiment Studying Cyanopyridone Structure
Main Article Content
Abstract
In this study, we describe the NMR 1H-NMR, JMOD-13C-NMR và HSQC at variable temperatures to determine the structure of the pyridone compound with specific conformation which cause the unavailable of signal at 298K. Experiment of different NMR spectrum at variable temperatures helps to confirm the structure of the product of a three-component reaction.
Keywords:
NMR spectroscopy, sulfur, multicomponent reaction, pyridone.
References
[1] Y. Ling, Z. Y. Hao, D. Liang, C. L. Zhang, Y. F. Liu, Y. Wang, The Expanding Role of Pyridine and Dihydropyridine Scaffolds in Drug Design, Drug Des. Dev. Ther, Vol. 15, 2021, pp. 4289-4338, https://doi.org/10.2147/DDDT.S329547.
[2] A. Mahia, S. P. Diaz, S. Navarro, J. G. Frutos, I. Pallares, J. Pujols, M. D. D. Villegas, J. A. Galvez, S. Ventura, J. Sancho, Design, Synthesis and Structure-activity Evaluation of Novel 2-pyridone-based Inhibitors of Alpha-synuclein Aggregation with Potentially Improved BBB Permeability, Bioorg, Chem, Vol. 117, 2021,
pp. 105472, https://doi.org/10.1016/j.bioorg.2021.105472.
[3] C. I. Wayne, Y. Sungqi, A. Todd, W. Heli, V. Todd, Y. Nanhua, H. Robert, H. Zhi, Z. W. Jim, Identification and Structure-activity Relationships of Substituted Pyridones as Inhibitors of Pim-1 Kinase, Bioorg, Chem Letters, Vol. 17, 2007, pp. 1679-1683, https://doi.org/10.1016/j.bmcl.2006.12.086.
[4] M. Naik, A. Raichurkar, B. S. Bandodkar, B. V. Varun, S. Bhat, R. Kalkhambkar, K. Murugan, R. Menon, J. Bhat, B. Paul et al., Structure Guided Lead Generation for M. tuberculosis Thymidylate Kinase (Mtb TMK): Discovery of
3-Cyanopyridone and 1,6-Naphthyridin-2-one as Potent Inhibitors, J. Med, Chem, Vol. 58, 2015, pp. 753-766, https://doi.org/10.1021/jm5012947.
[5] A. M. Serry, S. Luik, S. Laufer, A. H. Abadi, One-Pot Synthesis of 4,6-Diaryl-2-oxo(imino)-1,2-dihydropyridine-3-carbonitrile; a New Scaffold for p38α MAP Kinase Inhibition, J. Comb, Chem, Vol. 12, 2010, pp. 559-565, https://doi.org/10.1021/cc1000488.
[6] L. N. Duy, N. T. Trang, N. N. N. Ha, R. Pascal, M. D. Hung, N. T. Binh, Direct access to 2-aryl-3-cyanothiophenes by a Base-catalyzed One-pot Two-step Three-component Reaction of Chalcones with Benzoylacetonitriles and Elemental Sulfur, Org, Chem, Frontiers, Vol. 9, 2022, pp. 3163-3168, https://doi.org/10.1039/D2QO00526C.
[7] K. Maciol, S. Schüttner, J. Blankenburg, T. JohannH. Frey, Glycidyl Cinnamate: Copolymerization with Glycidyl Ethers, In-Situ NMR Kinetics, and Photocrosslinking, Macromolecular Chemistry and Physics,
Vol. 224, 2023, pp. 2200366, https://doi.org/10.1002/macp.202200366.
[8] J. J. Allen, Y. Schneider, B. W. Kail, D. R. Luebke, H. NulwalaK. Damodaran, Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid, The Journal of Physical Chemistry B, Vol. 117, 2013, pp. 3877-3883, https://doi.org/10.1021/jp401188g.
[9] R. V. Williams, A. J. Aring, M. C. Bonifacio, A. Blumenfeld, 4,6-Barbaralanedicarboxy-2,8-dicarboxylic Anhydride and 1,5-dimethyl-4,6-Semibullvalenedicarboxy-2,8-dicarboxylic Anhydride: Examples of Unusual Barbaralanes and Semibullvalenes that do not Undergo the Cope Rearrangement, They are Locked as the Closed Tautomers, Journal of Physical Organic Chemistry, Vol. 30, 2017, pp. e3622, https://doi.org/10.1002/poc.3622.
[10] M. G. Viloca, R. Gelabert, A. G. Lafont, M. Moreno, J. M. Lluch, Temperature Dependence of Proton NMR Chemical Shift As a Criterion To Identify Low-Barrier Hydrogen Bonds, Journal of the American Chemical Society, Vol. 120, 1998, pp. 10203-10209, https://doi.org/10.1021/ja9742141.
[11] A. A. Malär, L. A. Völker, R. Cadalbert, L. Lecoq, M. Ernst, A. Böckmann, B. H. Meier, T. Wiegand, Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding, The Journal of Physical Chemistry B, Vol. 125, 2021, pp. 6222-6230, https://doi.org/10.1021/acs.jpcb.1c04061.
[12] G. D. Smith, O. Borodin, D. Bedrov, W. Paul, X. QiuM, Ediger, 13C NMR Spin- Lattice Relaxation and Conformational Dynamics in a 1, 4-Polybutadiene Melt. Macromolecules, Vol. 34, 2001, pp. 5192-5199, https://doi.org/10.1021/ma002206q.
[13] J. A. Pople, The Effect of Quadrupole Relaxation on Nuclear Magnetic Resonance Multiplets. Molecular Physics, Vol. 1, 1958, pp. 168-174, https://doi.org/10.1080/00268975800100201.
[14] R. Ludwig, F. WeinholdT, Farrar, Structure of Liquid N-methylacetamide: Temperature Dependence of NMR Chemical Shifts and Quadrupole Coupling Constants, The Journal of Physical Chemistry A, Vol. 101, 1997, pp. 8861-8870, https://doi.org/10.1021/jp971360k.
[15] Z. Dominguez, H. Dang, M. J. StrouseM, A. G. Garibay, Molecular “Compasses” and “Gyroscopes”, III. Dynamics of a Phenylene Rotor and Clathrated Benzene in a Slipping-Gear Crystal Lattice. Journal of the American Chemical Society, Vol. 124, 2002, pp. 7719-7727, https://doi.org/10.1021/ja025753v.
[2] A. Mahia, S. P. Diaz, S. Navarro, J. G. Frutos, I. Pallares, J. Pujols, M. D. D. Villegas, J. A. Galvez, S. Ventura, J. Sancho, Design, Synthesis and Structure-activity Evaluation of Novel 2-pyridone-based Inhibitors of Alpha-synuclein Aggregation with Potentially Improved BBB Permeability, Bioorg, Chem, Vol. 117, 2021,
pp. 105472, https://doi.org/10.1016/j.bioorg.2021.105472.
[3] C. I. Wayne, Y. Sungqi, A. Todd, W. Heli, V. Todd, Y. Nanhua, H. Robert, H. Zhi, Z. W. Jim, Identification and Structure-activity Relationships of Substituted Pyridones as Inhibitors of Pim-1 Kinase, Bioorg, Chem Letters, Vol. 17, 2007, pp. 1679-1683, https://doi.org/10.1016/j.bmcl.2006.12.086.
[4] M. Naik, A. Raichurkar, B. S. Bandodkar, B. V. Varun, S. Bhat, R. Kalkhambkar, K. Murugan, R. Menon, J. Bhat, B. Paul et al., Structure Guided Lead Generation for M. tuberculosis Thymidylate Kinase (Mtb TMK): Discovery of
3-Cyanopyridone and 1,6-Naphthyridin-2-one as Potent Inhibitors, J. Med, Chem, Vol. 58, 2015, pp. 753-766, https://doi.org/10.1021/jm5012947.
[5] A. M. Serry, S. Luik, S. Laufer, A. H. Abadi, One-Pot Synthesis of 4,6-Diaryl-2-oxo(imino)-1,2-dihydropyridine-3-carbonitrile; a New Scaffold for p38α MAP Kinase Inhibition, J. Comb, Chem, Vol. 12, 2010, pp. 559-565, https://doi.org/10.1021/cc1000488.
[6] L. N. Duy, N. T. Trang, N. N. N. Ha, R. Pascal, M. D. Hung, N. T. Binh, Direct access to 2-aryl-3-cyanothiophenes by a Base-catalyzed One-pot Two-step Three-component Reaction of Chalcones with Benzoylacetonitriles and Elemental Sulfur, Org, Chem, Frontiers, Vol. 9, 2022, pp. 3163-3168, https://doi.org/10.1039/D2QO00526C.
[7] K. Maciol, S. Schüttner, J. Blankenburg, T. JohannH. Frey, Glycidyl Cinnamate: Copolymerization with Glycidyl Ethers, In-Situ NMR Kinetics, and Photocrosslinking, Macromolecular Chemistry and Physics,
Vol. 224, 2023, pp. 2200366, https://doi.org/10.1002/macp.202200366.
[8] J. J. Allen, Y. Schneider, B. W. Kail, D. R. Luebke, H. NulwalaK. Damodaran, Nuclear Spin Relaxation and Molecular Interactions of a Novel Triazolium-Based Ionic Liquid, The Journal of Physical Chemistry B, Vol. 117, 2013, pp. 3877-3883, https://doi.org/10.1021/jp401188g.
[9] R. V. Williams, A. J. Aring, M. C. Bonifacio, A. Blumenfeld, 4,6-Barbaralanedicarboxy-2,8-dicarboxylic Anhydride and 1,5-dimethyl-4,6-Semibullvalenedicarboxy-2,8-dicarboxylic Anhydride: Examples of Unusual Barbaralanes and Semibullvalenes that do not Undergo the Cope Rearrangement, They are Locked as the Closed Tautomers, Journal of Physical Organic Chemistry, Vol. 30, 2017, pp. e3622, https://doi.org/10.1002/poc.3622.
[10] M. G. Viloca, R. Gelabert, A. G. Lafont, M. Moreno, J. M. Lluch, Temperature Dependence of Proton NMR Chemical Shift As a Criterion To Identify Low-Barrier Hydrogen Bonds, Journal of the American Chemical Society, Vol. 120, 1998, pp. 10203-10209, https://doi.org/10.1021/ja9742141.
[11] A. A. Malär, L. A. Völker, R. Cadalbert, L. Lecoq, M. Ernst, A. Böckmann, B. H. Meier, T. Wiegand, Temperature-Dependent Solid-State NMR Proton Chemical-Shift Values and Hydrogen Bonding, The Journal of Physical Chemistry B, Vol. 125, 2021, pp. 6222-6230, https://doi.org/10.1021/acs.jpcb.1c04061.
[12] G. D. Smith, O. Borodin, D. Bedrov, W. Paul, X. QiuM, Ediger, 13C NMR Spin- Lattice Relaxation and Conformational Dynamics in a 1, 4-Polybutadiene Melt. Macromolecules, Vol. 34, 2001, pp. 5192-5199, https://doi.org/10.1021/ma002206q.
[13] J. A. Pople, The Effect of Quadrupole Relaxation on Nuclear Magnetic Resonance Multiplets. Molecular Physics, Vol. 1, 1958, pp. 168-174, https://doi.org/10.1080/00268975800100201.
[14] R. Ludwig, F. WeinholdT, Farrar, Structure of Liquid N-methylacetamide: Temperature Dependence of NMR Chemical Shifts and Quadrupole Coupling Constants, The Journal of Physical Chemistry A, Vol. 101, 1997, pp. 8861-8870, https://doi.org/10.1021/jp971360k.
[15] Z. Dominguez, H. Dang, M. J. StrouseM, A. G. Garibay, Molecular “Compasses” and “Gyroscopes”, III. Dynamics of a Phenylene Rotor and Clathrated Benzene in a Slipping-Gear Crystal Lattice. Journal of the American Chemical Society, Vol. 124, 2002, pp. 7719-7727, https://doi.org/10.1021/ja025753v.