Selective Transformation of Isoeugenol to Licarin A using HKUST-1 Catalyst
Main Article Content
Abstract
The research delineated the utilization of Cu-MOF (HKUST-1) as a proficient heterogeneous catalyst for the selective transformation of isoeugenol to licarin A. The HKUST-1 was synthesized through a straightforward methodology and its structure was confirmed by various characterization employing a range of techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM) with Energy Dispersive X-ray analysis (EDX), and N2 adsorption/desorption. The catalyst exhibited outstanding catalytic efficacy in the selective oxidation of isoeugenol, resulting in a 75% yield of licarin A under mild conditions in the presence of TBHP. Furthermore, the catalyst demonstrated stability, retaining its activity after being reused at least four times without deterioration.
References
https://doi.org/10.1016/J.EXPPARA.2013.07.007.
[2] M. M. O. Cabral, J. M. B. Filho, G. L. A. Maia, M. C. O. Chaves, M. V. Braga, W. De Souza, R. O. A. Soares, Neolignans from Plants in Northeastern Brazil (Lauraceae) with Activity against Trypanosoma Cruzi, Exp Parasitol, Vol. 124, 2010, pp. 319-324, https://doi.org/10.1016/J.EXPPARA.2009.11.007.
[3] B. Y. Park, B. S. Min, O. K. Kwon, S. R. Oh, K. S. Ahn, T. J. Kim, D. Y. Kim, K. W. Bae, H. K. Lee, Increase of Caspase-3 Activity by Lignans from Machilus Thunbergii in HL-60 Cells, Biol Pharm Bull., Vol. 27, 2004, pp. 1305-1307, https://doi.org/10.1248/BPB.27.1305.
[4] J. M. Choong, R. K. So, J. Kim, C. K. Young, Meso-Dihydroguaiaretic Acid and Licarin a of Machilus Thunbergii Protect against Glutamate-Induced Toxicity in Primary Cultures of a Rat Cortical Cells, Br J. Pharmacol, Vol. 146, 2005, pp. 752-759, https://doi.org/10.1038/SJ.BJP.0706380.
[5] K. S. Francis, E. Suresh, M. S. Nair, Chemical Constituents from Myristica Fragrans Fruit, Natural Product Research, Vol. 28, 2014, pp. 1664-1668, https://doi.org/10.1080/14786419.2014.934236.
[6] R. B. Teponno, S. Kusari, M. Spiteller, Recent Advances in Research on Lignans and Neolignans, Nat Prod Rep, Vol. 33, 2016, pp. 1044-1092, https://doi.org/10.1039/C6NP00021E.
[7] L. G. D. C. Oliveira, L. M. Brito, M. M. D. M. Alves, L. V. Amorim, E. P. C. S. Júnior, C. E. S. D. Carvalho, K. A. D. F. Rodrigues, D. D. R. Arcanjo, A. M. D. G. L. Citó, F. A. D. A. Carvalho, In Vitro Effects of the Neolignan
2,3-Dihydrobenzofuran Against Leishmania Amazonensis, Basic Clin Pharmacol Toxicol, Vol. 120, 2017, pp. 52-58, https://doi.org/10.1111/BCPT.12639.
[8] V. R. Meleti, V. R. Esperandim, L. G. B. Flauzino, A. H. Prizantelli, L. A. D. L. Paula, L. G. Magalhães, W. R. Cunha, R. D. S. Laurentiz, A. P. D. R. Pissurno, N. P. D. Nanayakkara, A. C. Pereira, J. K. Bastos, R. L. T. Parreira, R. P. Orenha, M. L. A. E. Silva, (±)-Licarin a and its Semi-Synthetic Serivatives: In Vitro and in Silico Evaluation of Trypanocidal and Schistosomicidal Activities, Acta Trop., Vol. 202, 2020, pp. 105248, https://doi.org/10.1016/J.ACTATROPICA.2019.105248.
[9] M. R. B. D. Paiva, D. V. D. V. Santos, M. M. Coelho, R. R. MacHado, N. P. Lopes, A. S. Cunha, S. L. Fialho, Licarin A as a Novel Drug for Inflammatory Eye Diseases, Journal of Ocular Pharmacology and Therapeutics, Vol. 37, 2021, pp. 290-300, https://doi.org/10.1089/JOP.2020.0129.
[10] L. C. Rodrigues, J. M. B. Filho, S. D. G. Marques, F. V. P. Borges, L. A. D. A. Silva, I. H. B. D. Laguna, R. Mioso, Formation of Bioactive Benzofuran via Oxidative Coupling, using Coconut Water (Cocos Nucifera L.) as Biocatalyst, Org. Commun., Vol. 10, 2017, pp. 72-78, https://doi.org/10.25135/acg.oc.10.16.11.449.
[11] M. Ashengroph, J. Amini, Bioconversion of Isoeugenol to Vanillin and Vanillic Acid using the Resting Cells of Trichosporon Asahii, 3 Biotech., Vol. 7, 2017, pp. 1-9, https://doi.org/10.1007/S13205-017-0998-9.
[12] P. Y. Chen, Y. H. Wu, M. H. Hsu, T. P. Wang, E. C. Wang, Cerium Ammonium Nitrate-Mediated the Oxidative Dimerization of p-alkenylphenols: A New Synthesis of Substituted (±)-trans-dihydrobenzofurans, Tetrahedron,
Vol. 69, 2013, pp. 653-657, https://doi.org/10.1016/J.TET.2012.11.006.
[13] S. Y. Liu, G. Q. Wang, Z. Y. Liang, Q. A. Wang, Synthesis of Dihydrobenzofuran Neoligans Licarin a and Dihydrocarinatin as well as Related Triazolylglycosides, Chem Res Chin Univ., Vol. 29, 2013, pp. 1119-1124,
https://doi.org/10.1007/S40242-013-3131-6.
[14] O. K. Nguyen, L. V. Dang, S. T. Le, T. D. Vu, B. T. Nguyen, T. T. M. Nguyen, D. V. Do, Selective Oxidation of Isoeugenol to Licarin a using CuFe2O4 Catalysts under Mild Conditions, Chemical Papers, Vol. 77, 2023, pp. 1583-1591, https://doi.org/10.1007/S11696-022-02575-5.
[15] B. C. Li, J. Y. Lin, J. Lee, E. Kwon, B. X. Thanh, X. Duan, H. H. Chen, H. Yang, K. Y. A. Lin, Size-Controlled Nanoscale Octahedral HKUST-1 as an Enhanced Catalyst for Oxidative Conversion of Vanillic Alcohol: The Mediating Effect of Polyvinylpyrrolidone, Colloids Surf a Physicochem Eng Asp., Vol. 631, 2021, pp. 127639,
https://doi.org/10.1016/J.COLSURFA.2021.127639.
[16] R. Shi, C. Liu, W. Wang, N. Wang, P. Shen, Z. Liu, J. Hu, F. Shi, Preparation of HKUST-1 Functionalized Porous Silica Crosslinked Sodium Alginate Composite: Efficient Reduction of 4-nitrophenol to 4-aminophenol, Mater Lett., Vol. 352, 2023, pp. 135177, https://doi.org/10.1016/J.MATLET.2023.135177.
[17] D. V. Do, H. N. Do, N. K. Nguyen, T. A. Le, T. M. Le, B. V. Phuc, T. S. Le, Q. A. Ngo, H. Nguyen, T. Q. Hung, T. T. Dang, Efficient Synthesis of 5-aryl-5H-pyrido[2′,1′:2,3]imidazo[4,5-b]indoles by Double CN Coupling Reactions using HKUST-1 as Recyclable Heterogeneous Catalyst under Air, Tetrahedron Lett., Vol. 122, 2023, pp. 154504, https://doi.org/10.1016/J.TETLET.2023.154504.
[18] Y. Huang, J. Huang, Y. Zhou, X. Fan, Y. Li, Pd@HKUST-1@Cu(II)/CMC Composite Bead as an Efficient Synergistic Bimetallic Catalyst for Sonogashira Cross-Coupling Reactions, Carbohydrate Polymers, Vol. 324, No. 15, 2024, pp. 121531, https://doi.org./10.1016/j.carbpol.2023.121531.
[19] P. Wang, Z. Liu, Y. Xu, S. Li, H. Huang, S. Wang, Construction of Cu/MOF Composites Via Vontrolling Nucleation Strategy with High Catalytic Activity, Microporous and Mesoporous Materials, Vol. 349, 2023, pp. 112430, https://doi.org/10.1016/j.micromeso.2023.112430.
[20] J. Tapiador, E. G. Rojas, P. Leo, C. Martos, G. Calleja, G. Orcajo, Copper MOFs Performance in the Cycloaddition Reaction of CO2 and Epoxides, Microporous and Mesoporous Materials, Vol. 361, 2023, pp. 112741,
https://doi.org/10.1016/j.micromeso.2023.112741.