Nguyen Thi Phuong Le Chi, Truong Thi Vuong, Nguyen Thi Lan, Truong Cong Duc, Truong Thanh Tam, Nguyen Tri Quoc, Nguyen Van Luong, Tran Thi Thu Phuong, Nguyen Vu Ngoc Mai

Main Article Content

Abstract

 In this paper, V2O5 combining with g-C3N4 were obtained to reduce charge recombination rate between electrons and holes in semiconductors. X-ray photoelectron spectroscopy (XPS) results indicated certain interaction between V2O5 and g-C3N4 in the V2O5/g-C3N4 heterojunction. In addition, the reducing in recombination of photogenerated electrons and holes was confirmed via the photoluminescence (PL) spectrum. The photocatalytic activities of the as-synthesized materials were investigated by the degradation of tetracycline hydrochloride (TC) under visible light. The V2O5/g-C3N4 heterojunction is more active than pure V2O5 and g-C3N4. The TC degradation efficiency by V2O5/g-C3N4 photocatalyst under visible light was 82.18% after 180 minutes. The improvement in photocatalytic activity of V2O5/g-C3N4 can be attributed to the reduction of recombination rate of photogenerated electron and hole pairs.

Keywords: V2O5, g-C3N4, photocatalytic activity, visible light, recombination, tetracycline hydrochloride.

References

[1] J. Feng, M. Cao, L. Wang, X. Ran, B. Xiao, J. Zhu, Z. Liu, X. Xi, G. Feng, R. Li, Ultra-thin DyFeO3/g-C3N4 p-n Heterojunctions for Highly Efficient Photo-Fenton Removal of Oxytetracycline and Antibacterial Activity, Journal of Alloys and Compounds, Vol. 939, 2023, pp. 168789.
[2] S. Liu, C. Wang, Y. Song, B. Yan, B. Ai, K. Pan, L. Zhang, Fabrication of a Hybrid Phase TiO2/g-C3N4 Heterojunction Composite with Enhanced Adsorption and Photocatalytic Degradation of MB under Vsible Light, New J. Chem., Vol. 47, 2023, pp. 8170-8181.
[3] M. L. Matias, A. S. R. Machado, J. Rodrigues, T. Calmeiro, J. Deuermeier, A. Pimentel, E. Fortunato, R. Martins, D. Nunes, Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts, Nanomaterials,
Vol. 13, No. 6, 2023, pp. 1090.
[4] H. Khan, I. H. Lone, S. E. Lofland, K. V. Ramanujachary, T. Ahmad, Exploiting Multiferroicity of TbFeO3 Nanoparticles for Hydrogen Generation through Photo/Electro/Photoelectro-catalytic Water Splitting, International Journal of Hydrogen Energy, Vol. 48, No. 14, 2023, pp. 5493-5505.
[5] M. Baladi, M. Amiri, M. Amirinezhad, W. K. Abdulsahib, F. Pishgouii, Z. Golshani, M. S. Niasari, Green Synthesis and Characterization of Terbium Orthoferrite Nanoparticles Decorated with g-C3N4 for Antiproliferative Activity Against Human Cancer Cell Lines (Glioblastoma, and Neuroblastoma), Arabian Journal of Chemistry, Vol. 16, No. 7, 2023, pp. 104841.
[6] P. Hu, P. Hu, T. D. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long, Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications, Chem. Rev., Vol. 123, No. 8, 2023, pp. 4353-4415.
[7] Y. S. Thakur, A. D. Acharya, Bhawna, B. Singh, Preparation and Characterization of Vanadium Oxide (V2O5) Ssheet Like Nanostructure, AIP Conf. Proc., Vol. 2800, 2023, pp. 020051.
[8] R. T. Rasheed, H. S. Mansoor, T. A. Abdullah, T. Juzsakova, N. A. Jammal, A. D. Salman, R. R. A. Shaikhly, P. C. Le, E. Domokos, T. A. Abdulla, Synthesis, Characterization of V2O5 Nanoparticles and Determination of Catalase Mimetic Activity by New Colorimetric Method, Journal of Thermal Analysis and Calorimetry, Vol. 145, 2021, pp. 297-307.
[9] Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, W. Zhu, Scalable and Facile Synthesis of V2O5 Nanoparticles Via Ball Milling for Improved Aerobic Oxidative Desulfurization, Green Energy & Environment, Vol. 6, No. 2, 2021, pp. 169-175.
[10] S. V. P. Vattikuti, P. A. K. Reddy, J. Shim, Byon, Synthesis of Vanadium-pentoxide-Supported Graphitic Carbon Nitride Heterostructure and Studied their Hydrogen Evolution Activity under Solar Light, Journal of Materials Science: Materials in Electronics, Vol. 29, No. 6, 2018.
[11] V. V. Pham, H. H. Tran, T. M. Cao, V2O5 Nanorod-Loaded g-C3N4 Sheets for Efficient Photocatalytic Removal of NO and Minimal NO2 Yield under Visible Light, Energy Fuels, Vol. 37, No. 17, 2023, pp. 13241-13249.
[12] Y. N. Zang, S. S. Yang, J. Ding, S. Y. Zhao, C. X. Chen, L. He, N. Q. Ren, A Biochar-promoted V2O5/g-C3N4 Z-Scheme Heterostructure for Enhanced Simulated Solar Lightdriven Photocatalytic Activity, RSC Adv., Vol. 11, 2021, pp. 15106.
[13] X. Zhang, X. Jia, P. Duan, R. Xia, N. Zhang, B. Cheng, Y. Zhang, V2O5/P-g-C3N4 Z-scheme Enhanced Heterogeneous Photocatalytic Removal of Methyl Orange from Water under Visible Light Irradiation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 608, 2021, pp. 125580-125597.
[14] S. Vignesh, S. Suganthi, M. Srinivasan, A. Tamilmani, J. K. Sundar, S. Gedi, B. Palanivel, S. F. Shaikh, M. Ubaidullah, Md. K. Raza, Investigation of Heterojunction Between α-Fe2O3/V2O5 and g-C3N4 Ternary Nanocomposites for Upgraded Photo-degradation Performance of Mixed Pollutants: Efficient dual Z-scheme Mechanism, Journal of Alloys and Compounds, Vol. 902, 2022, pp. 163705.
[15] A. Kumar, S. K. Sharma, G. Sharma, M. Naushad, F. J. Stadler, CeO2/g-C3N4/V2O5 Ternary Nano Hetero-structures Decorated with CQDs for Enhanced Photo-Reduction Capabilities under Different Light Sources: Dual Z-scheme Mechanism, Journal of Alloys and Compounds, Vol. 838, 2020, pp. 155692.
[16] N. Asim, S. Radiman, M. A. Yarmo, M. S. Banaye Golriz, Vanadium Pentoxide: Synthesis and Characterization of Nanorod and Nanoparticle V2O5 Using CTAB Micelle Solution, Microporous Mesoporous Mater, Vol. 120, 2009, pp. 397-401.
[17] S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, S. Liang, J. Zhang, Constructing Oxygen-doped g-C3N4 Nanosheets with an Enlarged Conductive Band Edge for Enhanced Visible-light-driven Hydrogen Evolution, Inorganic Chemistry Frontiers, Vol. 5, No. 7, 2018, pp. 1721-1727.
[18] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Che, Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity, Journal of Materials Chemistry, Vol. 21, 2011, pp. 14398.
[19] L. Jia, H. Wang, D. Dhawale, C. Anand, M. A. Wahab, Q. Ji, A. Vinu, Highly Ordered Macro-Mesoporous Carbon Nitride Film for Selective Detection of Acidic/basic Molecules, Chem. Commun., Vol. 50, No. 45, 2014, pp. 5976-5979.
[20] J. R. Zhang, Y. Ma, S. Y. Wang, J. Ding, B. Gao, E. Kan, W. Hua, Accurate K-edge X-ray Photoelectron and Absorption Spectra of g-C3N4 Nanosheets by First-principles Simulations and Reinterpretations, Phys. Chem. Chem. Phys., Vol. 21, 2019, pp. 22819-22830.
[21] Shawky, S. M. Albukhari, M. S. Amin, A. I. Zaki, Mesoporous V2O5/g-C3N4 Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 31, No. 11, 2021, pp. 4209-4221.
[22] Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angewandte Chemie International Edition, Vol. 51, 2012, pp. 68-89.
[23] S. Zuluaga, L. H. Liu, N. Shafiq, S. M. Rupich, J. F. Veyan, Y. J. Chabal, T. Thonhauser, Structural Band-gap Tuning in g-C3N4, Physical Chemistry Chemical Physics, Vol. 17, No. 2, 2015, pp. 957-962.