Enhanced Photodegradation Ability of Antibiotics with Composite Based on V2O5 under Visible Light
Main Article Content
Abstract
In this paper, V2O5 combining with g-C3N4 were obtained to reduce charge recombination rate between electrons and holes in semiconductors. X-ray photoelectron spectroscopy (XPS) results indicated certain interaction between V2O5 and g-C3N4 in the V2O5/g-C3N4 heterojunction. In addition, the reducing in recombination of photogenerated electrons and holes was confirmed via the photoluminescence (PL) spectrum. The photocatalytic activities of the as-synthesized materials were investigated by the degradation of tetracycline hydrochloride (TC) under visible light. The V2O5/g-C3N4 heterojunction is more active than pure V2O5 and g-C3N4. The TC degradation efficiency by V2O5/g-C3N4 photocatalyst under visible light was 82.18% after 180 minutes. The improvement in photocatalytic activity of V2O5/g-C3N4 can be attributed to the reduction of recombination rate of photogenerated electron and hole pairs.
References
[2] S. Liu, C. Wang, Y. Song, B. Yan, B. Ai, K. Pan, L. Zhang, Fabrication of a Hybrid Phase TiO2/g-C3N4 Heterojunction Composite with Enhanced Adsorption and Photocatalytic Degradation of MB under Vsible Light, New J. Chem., Vol. 47, 2023, pp. 8170-8181.
[3] M. L. Matias, A. S. R. Machado, J. Rodrigues, T. Calmeiro, J. Deuermeier, A. Pimentel, E. Fortunato, R. Martins, D. Nunes, Microwave Synthesis of Visible-Light-Activated g-C3N4/TiO2 Photocatalysts, Nanomaterials,
Vol. 13, No. 6, 2023, pp. 1090.
[4] H. Khan, I. H. Lone, S. E. Lofland, K. V. Ramanujachary, T. Ahmad, Exploiting Multiferroicity of TbFeO3 Nanoparticles for Hydrogen Generation through Photo/Electro/Photoelectro-catalytic Water Splitting, International Journal of Hydrogen Energy, Vol. 48, No. 14, 2023, pp. 5493-5505.
[5] M. Baladi, M. Amiri, M. Amirinezhad, W. K. Abdulsahib, F. Pishgouii, Z. Golshani, M. S. Niasari, Green Synthesis and Characterization of Terbium Orthoferrite Nanoparticles Decorated with g-C3N4 for Antiproliferative Activity Against Human Cancer Cell Lines (Glioblastoma, and Neuroblastoma), Arabian Journal of Chemistry, Vol. 16, No. 7, 2023, pp. 104841.
[6] P. Hu, P. Hu, T. D. Vu, M. Li, S. Wang, Y. Ke, X. Zeng, L. Mai, Y. Long, Vanadium Oxide: Phase Diagrams, Structures, Synthesis, and Applications, Chem. Rev., Vol. 123, No. 8, 2023, pp. 4353-4415.
[7] Y. S. Thakur, A. D. Acharya, Bhawna, B. Singh, Preparation and Characterization of Vanadium Oxide (V2O5) Ssheet Like Nanostructure, AIP Conf. Proc., Vol. 2800, 2023, pp. 020051.
[8] R. T. Rasheed, H. S. Mansoor, T. A. Abdullah, T. Juzsakova, N. A. Jammal, A. D. Salman, R. R. A. Shaikhly, P. C. Le, E. Domokos, T. A. Abdulla, Synthesis, Characterization of V2O5 Nanoparticles and Determination of Catalase Mimetic Activity by New Colorimetric Method, Journal of Thermal Analysis and Calorimetry, Vol. 145, 2021, pp. 297-307.
[9] Y. Zou, C. Wang, H. Chen, H. Ji, Q. Zhu, W. Yang, W. Zhu, Scalable and Facile Synthesis of V2O5 Nanoparticles Via Ball Milling for Improved Aerobic Oxidative Desulfurization, Green Energy & Environment, Vol. 6, No. 2, 2021, pp. 169-175.
[10] S. V. P. Vattikuti, P. A. K. Reddy, J. Shim, Byon, Synthesis of Vanadium-pentoxide-Supported Graphitic Carbon Nitride Heterostructure and Studied their Hydrogen Evolution Activity under Solar Light, Journal of Materials Science: Materials in Electronics, Vol. 29, No. 6, 2018.
[11] V. V. Pham, H. H. Tran, T. M. Cao, V2O5 Nanorod-Loaded g-C3N4 Sheets for Efficient Photocatalytic Removal of NO and Minimal NO2 Yield under Visible Light, Energy Fuels, Vol. 37, No. 17, 2023, pp. 13241-13249.
[12] Y. N. Zang, S. S. Yang, J. Ding, S. Y. Zhao, C. X. Chen, L. He, N. Q. Ren, A Biochar-promoted V2O5/g-C3N4 Z-Scheme Heterostructure for Enhanced Simulated Solar Lightdriven Photocatalytic Activity, RSC Adv., Vol. 11, 2021, pp. 15106.
[13] X. Zhang, X. Jia, P. Duan, R. Xia, N. Zhang, B. Cheng, Y. Zhang, V2O5/P-g-C3N4 Z-scheme Enhanced Heterogeneous Photocatalytic Removal of Methyl Orange from Water under Visible Light Irradiation, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 608, 2021, pp. 125580-125597.
[14] S. Vignesh, S. Suganthi, M. Srinivasan, A. Tamilmani, J. K. Sundar, S. Gedi, B. Palanivel, S. F. Shaikh, M. Ubaidullah, Md. K. Raza, Investigation of Heterojunction Between α-Fe2O3/V2O5 and g-C3N4 Ternary Nanocomposites for Upgraded Photo-degradation Performance of Mixed Pollutants: Efficient dual Z-scheme Mechanism, Journal of Alloys and Compounds, Vol. 902, 2022, pp. 163705.
[15] A. Kumar, S. K. Sharma, G. Sharma, M. Naushad, F. J. Stadler, CeO2/g-C3N4/V2O5 Ternary Nano Hetero-structures Decorated with CQDs for Enhanced Photo-Reduction Capabilities under Different Light Sources: Dual Z-scheme Mechanism, Journal of Alloys and Compounds, Vol. 838, 2020, pp. 155692.
[16] N. Asim, S. Radiman, M. A. Yarmo, M. S. Banaye Golriz, Vanadium Pentoxide: Synthesis and Characterization of Nanorod and Nanoparticle V2O5 Using CTAB Micelle Solution, Microporous Mesoporous Mater, Vol. 120, 2009, pp. 397-401.
[17] S. Sun, J. Li, J. Cui, X. Gou, Q. Yang, S. Liang, J. Zhang, Constructing Oxygen-doped g-C3N4 Nanosheets with an Enlarged Conductive Band Edge for Enhanced Visible-light-driven Hydrogen Evolution, Inorganic Chemistry Frontiers, Vol. 5, No. 7, 2018, pp. 1721-1727.
[18] J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Che, Simple Pyrolysis of Urea into Graphitic Carbon Nitride with Recyclable Adsorption and Photocatalytic Activity, Journal of Materials Chemistry, Vol. 21, 2011, pp. 14398.
[19] L. Jia, H. Wang, D. Dhawale, C. Anand, M. A. Wahab, Q. Ji, A. Vinu, Highly Ordered Macro-Mesoporous Carbon Nitride Film for Selective Detection of Acidic/basic Molecules, Chem. Commun., Vol. 50, No. 45, 2014, pp. 5976-5979.
[20] J. R. Zhang, Y. Ma, S. Y. Wang, J. Ding, B. Gao, E. Kan, W. Hua, Accurate K-edge X-ray Photoelectron and Absorption Spectra of g-C3N4 Nanosheets by First-principles Simulations and Reinterpretations, Phys. Chem. Chem. Phys., Vol. 21, 2019, pp. 22819-22830.
[21] Shawky, S. M. Albukhari, M. S. Amin, A. I. Zaki, Mesoporous V2O5/g-C3N4 Nanocomposites for Promoted Mercury (II) Ions Reduction Under Visible Light, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 31, No. 11, 2021, pp. 4209-4221.
[22] Y. Wang, X. Wang, M. Antonietti, Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry, Angewandte Chemie International Edition, Vol. 51, 2012, pp. 68-89.
[23] S. Zuluaga, L. H. Liu, N. Shafiq, S. M. Rupich, J. F. Veyan, Y. J. Chabal, T. Thonhauser, Structural Band-gap Tuning in g-C3N4, Physical Chemistry Chemical Physics, Vol. 17, No. 2, 2015, pp. 957-962.