Adhesion and Cathodic Delamination Properties of Epoxy Coating Reinforced by Magnetite/Hydroxyapatite on Carbon Steel Substrate
Main Article Content
Abstract
In this study, magnetite/hydroxyapatite nanoparticles were incorporated at a concentration of 5 wt.% to enhance both the adhesion strength and cathodic delamination resistance of an epoxy coating applied to a carbon steel substrate. Magnetite/hydroxyapatite (FoHAP) was prepared with varying Fe3O4 to hydroxyapatite weight ratios, ranging from 10 to 50 wt.%. The adhesion test was quantitatively assessed using the pull-off method following the ASTM D4541 standard and qualitative evaluations were conducted using the cross-cut method following the ASTM D3359 standard. The results demonstrated that the coating reinforced with magnetite/hydroxyapatite nanoparticles exhibited a superior adherence compared to both the unpigmented epoxy and the coating with hydroxyapatite alone. Furthermore, assessments of the cathodic delamination process and the electrochemical impedance spectroscopy revealed that the optimized Fe3O4/HAP ratio of 10 wt.% correlated with a reduced area of delamination, indicating the reinforcement in cathodic delamination protection and also the adhesion properties of the nanoparticle-enhanced coating.
References
[2] T. T. Thai, A. T. Trinh, G. V. Pham, T. T. T. Pham, H. N. Xuan, Corrosion Protection Properties of Cobalt Salt for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloy, Journal of Corrosion Science and Technology, Vol. 19,
No. 1, 2020, pp. 8-15, https://doi.org/10.14773/cst.2020.19.1.8.
[3] T. A. Truc, N. X. Hoan, D. T. Bach, T. T. Thuy, K. Ramadass, C. I. Sathish, N. T. Chinh, N. D. Trinh, T. Hoang, Hydrothermal Synthesis of Cobalt Doped Magnetite Nanoparticles for Corrosion Protection of Epoxy Coated Reinforced Steel, Journal of Nanoscience and Nanotechnology, Vol. 20, 2020, pp. 1-8, https://doi.org/10.1166/jnn.2020.17413.
[4] F. Deflorian, M. Fedel, S. Rossi, P. Kamarchik, Evaluation of Mechanically Treated Cerium (IV) Oxides as Corrosion Inhibitors for Galvanized Steel, Electrochimica Acta, Vol. 56, 2011, pp. 7833-7844, https://doi.org/10.1016/j.electacta.2011.04.014.
[5] A. T. Trinh, T. T. Nguyen, T. T. Thai, T. X. H. To, X. H. Nguyen, A. S. Nguyen, M. Aufray, N. Pébère, Improvement of Adherence and Anticorrosion Properties of an Epoxy-Polyamide Coating on Steel by Incorporation of an Indole-3 Butyric Acid-modified Nanomagnetite, Journal of Coatings Technology and Research, Vol. 13, No. 3, 2016, pp. 489-499, https://doi.org/10.1007/s11998-015-9768-y.
[6] G. Y. Li, Y. R. Jiang, K. L. Huang, P. Ding, J. Chen, Preparation and Properties of Magnetic Fe3O4–chitosan Nanoparticles, Journal of Alloys and Compounds, Vol. 466, 2008, pp. 451-456, https://doi.org/ 10.1016/j.jallcom.2007.11.100.
[7] N. Yang, S. Zhu, D. Zhang, S. XU, Synthesis and Properties of Magnetic Fe3O4-activated Carbon Nanocomposite Particles for Dye Removal, Materials Letters, Vol. 62, 2008, pp. 645-647, https://doi.org/10.1016/j.matlet.2007.06.049.
[8] T. T. T. Thuy, T. T. Anh, P. T. T. Tam, N. X. Hoan, Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys, Corrosion Science and Technology, Vol. 22, No. 2, 2023, pp. 90-98, https://doi.org/10.14773/cst.2023.22.2.90.
[9] A. H. Asif, M. S. Mahajan, N. Sreeharsha, V. V. Gite, B. E. A. Dhubiab, B. E. A. Dhubiab, S. H. Nanjappa, G. Meravanige, D. M. Aleyadhy, Enhancement of Anticorrosive Performance of Cardanol Based Polyurethane Coatings by Incorporating Magnetic Hydroxyapatite Nanoparticles, Materials, Vol. 15, 2022, pp. 2308,
https://doi.org/10.3390/ma15062308.
[10] H. D. Linh, C. P. Anh, C. Viet, L. T. H. Phong, N. X. Hoan, Preparation of the Magnetic Composite Materials Fe3O4/Hydroxyapatite and its Application for Removal of 2.4-D and Chrysoidine Crystal, VNU Journal of Science: Natural Sciences and Technology, Vol. 37, No. 1, 2021, pp. 35-43, https://doi.org/10.25073/2588-1140/vnunst.5110.
[11] K. N. Allahar, M. E. Orazem, K. Ogle, Mathematical Model for Cathodic Delamination using a Porosity-pH Relationship, Corrosion Science, Vol. 49, 2007, pp. 3638-3658, https://doi.org/10.1016/j.corsci.2007.03.024.
[12] M. A. Petrunin, L. B. Maksaeva, N. A. Gladkikh, T. A. Yurasova, M. A. Maleeva, V. E. Ignatenko, Cathodic Delamination of Polymer Coatings from Metals, Mechanism and Preventaion Methods, A Review., Int. J. Corros. Scale Inhib., Vol. 10, No. 1, 2021, https://doi.org/10.17675/2305-6894-2021-10-1-1.
[13] F. Deflorian, L. Fedrizzi, Adhesion Characterization of Protective Organic Coatings by Electrochemical Impedance Spectroscopy, Journal of Adhesion Science and Technology, Vol. 13, No. 5, 1999, pp. 629-645,
https://doi.org/10.1163/156856199X00154.
[14] M. Fedel, M. G. Olivier, M. Poelman, F. Deflorian, S. Rossi, M. E. Druart, Corrosion Protection Properties of Silane Pre-treated Powder Coated Galvanized Steel, Progress in Organic Coatings, Vol. 66, 2009, pp. 118-128,
https://doi.org/10.1016/j.porgcoat.2009.06.011.