Tran Thi Ngoc Anh, Sai Cong Danh, Nguyen Thi Thu, Do Huy Hoang

Main Article Content

Abstract

 To optimize the surface-enhanced Raman (SERS) phenomenon on the surface of noble metals, gold nanoparticles were synthesized on the surface of nano-sized copper wires to enhance the dispersion of gold particles on the research surface. A simple experimental procedure was carried out in two stages. First, the thin copper substrate was lightly oxidized with ammonium persulfate in an alkaline environment, then incubated at 200oC for 3 hours to form copper nanowires that exist stably on the substrate surface. Immediately afterward, highly uniform CuO/Au nanowires were formed by the chemical reduction of HAuCl4 on the surface of the oxidized copper plate. The results show that gold nanoparticles of about 5 nm were attached to CuO nanowires with a length of up to 10 µm and a diameter between 100 and 300 nm. The X-ray energy dispersive spectrum demonstrated a uniform distribution of gold particles. The CuO/Au structure was used as a SERS substrate to detect methylene blue at a low concentration of 10 pM corresponding to 2 signals at the peaks 1395 cm−1 and 1625 cm−1 as the C-H and C-C deformation vibrations of the aromatic ring. The logarithms of the methylene blue concentrations were linearly proportional to their SERS signal intensity of methylene blue at the peak of 1625 cm-1  with a value R2 = 0.96. The signals of SERS for methylene blue at twelve different points on the material sample showed no significant differences in both intensity and shape of the spectrum, with an RSD value of 5.9%.


 

Keywords: Raman scattering, CuO nanowire, core-shell.

References

[1] L. Lin, H. Yang, X. Xu, Effects of Water Pollution on Human Health and Disease Heterogeneity:
A Review, Frontiers in Environmental Science, Vol. 10, 2022, https://doi.org/10.3389/fenvs.2022.880246.
[2] P. Raizada, A. Sudhaik, S. Patial, V. Hasija, A. A. Parwaz Khan, P. Singh, S. Gautam, M. Kaur, V. H. Nguyen, Engineering Nanostructures of CuO-Based Photocatalysts for Water Treatment: Current Progress and Future Challenges, Arabian Journal of Chemistry, Vol. 13, No. 11, 2020, pp. 8424-8457, https://doi.org/10.1016/j.arabjc.2020.06.031.
[3] K. L. Wasewar, S. Singh, S. K. Kansal, Process Intensification of Treatment of Inorganic Water Pollutants, Inorganic Pollutants in Water, 2020, pp. 245-271, https://doi.org/10.1016/B978-0-12-818965-8.00013-5.
[4] C. Sharma, Y. S. Negi, Methods of Inorganic Pollutants Detection in Water, Inorganic Pollutants in Water, 2020, pp. 115-134, https://doi.org/10.1016/B978-0-12-818965-8.00007-X.
[5] V. Balaram, L. Copia, U. S. Kumar, J. Miller, S. Chidambaram, Pollution of Water Resources and Application of ICP-MS Techniques for Monitoring and Management - A Comprehensive Review, Geosystems and Geoenvironment, Vol. 2, No. 4, 2023, https://doi.org/10.1016/j.geogeo.2023.100210.
[6] Y. Guo, C. Liu, R. Ye, Q. Duan, Applied Sciences Advances on Water Quality Detection by Uv-vis Spectroscopy, Applied Sciences, Vol. 10, No. 19, 2020, https://doi.org/10.3390/app10196874.
[7] M. Spangenberg, J. I. Bryant, S. J. Gibson, P. J. Mousley, Y. Ramachers, G. R. Bell, Ultraviolet Absorption of Contaminants in Water, Scientific Reports, Vol. 11, No. 1, 2021, pp. 1-8, https://doi.org/10.1038/s41598-021-83322-w.
[8] A. M. Tenny, Application of Atomic Absorption Spectroscopy in a Water-Pollution Control Program, Developments in Applied Spectroscopy, Vol. 6, 1968, https://doi.org/10.1007/978-1-4684-8697-1_25.
[9] S. Almaviva, F. Artuso, I. Giardina, A. Lai, A. Pasquo, Fast Detection of Different Water Contaminants by Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy, Sensors, Vol. 22, 2022, https://doi.org/10.3390/s22218338.
[10] N. D. Thien, T. H. Dang, S. C. Doanh, L. Q. Thao, N. Q. Hoa, N. N. Dinh, N. M. Hieu, L. V. Vu, A Study on Fabrication of SERS Substrates Base on Porous Si Nanostructures and Gold Nanoparticles, Journal of Materials Science: Materials in Electronics, Vol. 34, No. 2, 2023, pp. 1-9, https://doi.org/10.1007/s10854-022-09518-6.
[11] T. H. Tran, M. H. Nguyen, T. H. T. Nguyen, V. P. T. Dao, Q. H. Nguyen, C. D. Sai, N. H. Pham,
T. C. Bach, A. B. Ngac, T. T. Nguyen, K. H. Ho, H. Cheong, V. T. Nguyen, Facile Fabrication of Sensitive Surface Enhanced Raman Scattering Substrate Based on CuO/Ag Core/shell Nanowires, Applied Surface Science, Vol. 509, 2020, https://doi.org/10.1016/j.apsusc.2020.145325.
[12] K. Ben Mabrouk, T. H. Kauffmann, M. D. Fontana, Abilities of Raman Sensor to Probe Pollutants in Water, Journal of Physics: Conference Series, Vol. 450, No. 1, 2013, https://doi.org/10.1088/1742-6596/450/1/012014.
[13] M. Jung, S. K. Kim, S. Lee, J. H. Kim, D. H. Woo, Ag Nanodot Array as a Platform for Surface-enhanced Raman Scattering, Journal of Nanophotonics, Vol. 7, No. 1, 2013, https://doi.org/10.1117/1.jnp.7.073798.
[14] Y. Yang, SERS Enhancement Dependence on the Diameter of Au Nanoparticles, Journal of Physics: Conference Series, Vol. 844, No. 1, 2017, https://doi.org/10.1088/1742-6596/844/1/012030.
[15] B. X. Yan, Y. ying Zhu, Y. Wei, H. Pei, Study on Surface Enhanced Raman Scattering of Au and Au@Al2O3 Spherical Dimers Based on 3D Finite Element Method, Scientific Reports, Vol. 11, No. 1, 2021, pp. 1-8, https://doi.org/10.1038/s41598-021-87997-z.
[16] S. Choi, S. Kweon, J. Kim, Electrodeposition of Pt Nanostructures with Reproducible SERS Activity and Superhydrophobicity, Physical Chemistry Chemical Physics, Vol. 17, Vol. 36, 2015, https://doi.org/10.1039/c5cp04261e.
[17] G. Sinha, L.E. Depero, I. Alessandri, Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods, ACS Applied Materials and Interfaces, Vol. 3, No. 7, 2011, pp. 2557-2563, https://doi.org/10.1021/am200396n.
[18] Z. Xie, F. Zhao, S. Zou, F. Zhu, Z. Zhang, W. Wang, TiO2 Nanorod Arrays Decorated with Au Nanoparticles as Sensitive and Recyclable SERS Substrates, Journal of Alloys and Compounds, Vol. 861, 2021,
https://doi.org/10.1016/j.jallcom.2020.157999.
[19] F. Ye, S. Ju, Y. Liu, Y. Jiang, H. Chen, L. Ge, C. Yan, A. Yuan, Ag-CuO Nanocomposites: Surface-Enhanced Raman Scattering Substrate and Photocatalytic Performance, Crystal Research and Technology, Vol. 54, No. 7, 2019, pp. 1-10, https://doi.org/10.1002/crat.201800257.
[20] A. K. Verma, R. Das, R. K. Soni, Laser Fabrication of Periodic Arrays of Microsquares on Silicon for SERS Application, Applied Surface Science, Vol. 427, 2018, pp. 133-140, https://doi.org/10.1016/j.apsusc.2017.08.143.
[21] C. D. Sai, V. T. Pham, T. N. A. Tran, T. T. H. Tran, T. B. N. Vu, T. H. H. Hoang, A. S. Pham, T. M. T. Nguyen, T. T. H. Duong, H. H. Do, Construction of Highly Condensed Cu2O/CuO Composites on Cu Sheet and Its Photocatalytic
in Photodegradation of Hazardous Colouring Agent Rose Bengal, Materials Transactions, Vol. 64, No. 9, 2023, pp. 2134-2142, https://doi.org/10.2320/matertrans.MT-MG2022008.
[22] A. K. Mishra, D. K. Jarwal, B. Mukherjee, A. Kumar, S. Ratan, M.R. Tripathy, S. Jit, Au Nanoparticles Modified CuO Nanowireelectrode Based Non-enzymatic Glucose Detection with Improved Linearity, Scientific Reports, Vol. 10, 2020, pp. 1–10, https://doi.org/10.1038/s41598-020-67986-4.
[23] Y. K. Hsu, C. H. Yu, H. H. Lin, Y. C. Chen, Y. G. Lin, Template Synthesis of Copper Oxide Nanowires for Photoelectrochemical Hydrogen Generation, Journal of Electroanalytical Chemistry, Vol. 704, 2013, pp. 19-23, https://doi.org/10.1016/j.jelechem.2013.06.008.
[24] W. Zhang, X. Wen, S. Yang, Y. Berta, Z. L. Wang, Single-crystalline Scroll-type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature, Advanced Materials, Vol. 15, No. 10, 2003, pp. 822-825,
https://doi.org/10.1002/adma.200304840.
[25] A. M. Balachandra, A. G. N. D. Darsanasiri, I. Harsini, P. Soroushian, M. G. Bakker, Surface Grown Copper Nanowires for Improved Cooling Efficiency, Cogent Engineering, Vol. 5, No. 1, pp. 1-22,
https://doi.org/10.1080/23311916.2018.1512039.
[26] N. X. Dinh, T. Q. Huy, L. V. Vu, L. T. Tam, A. T. Le, Multiwalled Carbon Nanotubes/silver Nanocomposite as Effective SERS Platform for Detection of Methylene Blue Dye in Water, Journal of Science: Advanced Materials and Devices, Vol. 1, No. 1, 2016, pp. 84-89, https://doi.org/10.1016/j.jsamd.2016.04.007.
[27] T. T. H. Pham, X. H. Vu, N. D. Dien, T. T. Trang, T. T. K. Chi, P. H. Phuong, N. T. Nghia, Ag Nanoparticles on ZnO Nanoplates as a Hybrid SERS-active Substrate for Trace Detection of Methylene Blue, RSC Advances, Vol. 12, No. 13, 2022, pp. 7850-7863, https://doi.org/10.1039/d2ra00620k.
[28] J. Yang, B. Chen, J. Peng, B. Huang, W. Deng, W. Xie, Z. Luo, Preparation of CuO Nanowires/Ag Composite Substrate and Study on SERS Activity, Plasmonics, Vol. 16, 2021, pp. 1059-1070, https://doi.org/10.1007/s11468-020-01358-6.