Dang Minh Huong Giang, Nguyen Duc Hieu, Chu Thi Hue, Pham Thi Ngoc Mai, Nguyen Thi Anh Huong, Hoang Quoc Anh

Main Article Content

Abstract

Polycyclic aromatic hydrocarbons (PAHs)  and their derivatives are a diverse group of organic pollutants, which are relatively persistent and toxic. Simultaneous determination of unsubstituted PAHs and methylated PAHs (Me-PAHs) is necessary to provide comprehensive insights into contamination levels and sources of these pollutants. In this study, we collected surface sediment samples in Vietnamese central coast to analyze 7 PAHs and 12 Me-PAHs.
The sediment samples were extracted by using a focused ultrasonic processor with acetone/hexane (1:1) mixture and toluene. The extract was purified by column chromatography technique with activated silica gel and dichloromethane/hexane (1:3) as elution solvent. PAHs and Me-PAHs were determined by a gas chromatography/mass spectrometry (GC/MS) system operated in electron impact ionization (EI) and selected ion monitoring mode (SIM). Concentrations of total
7 PAHs and 12 Me-PAHs ranged from 30 to 246 (average 92) nanograms per gram sediment (ng/g). These levels were comparable to or lower than those measured in Vietnamese river sediments and marine sediments from some other countries in the world. The accumulation profiles of PAHs and Me-PAHs indicated that their emissions are likely associated with mixed pyrogenic and petrogenic sources. Our results have provided preliminary information about the pollution degree and accumulation characteristics of these substances in Vietnamese marine environments. Additional comprehensive studies should be performed to characterize contamination characterisrics, emission sources, and ecological risks of PAHs and their derivatives in this country.

Keywords: PAHs, Me-PAHs, sediment, central coast, Vietnam.

References

[1] K. Srogi, Monitoring of Environmental Exposure to Polycyclic Aromatic Hydrocarbons: A Review, Environ. Chem. Lett., Vol. 5, 2007, pp. 169-195, https://doi.org/10.1007/s10311-007-0095-0.
[2] T. Sauer, P. Boehm, The Use of Defensible Analytical Chemical Measurements for Oil Spill Natural Resource Damage Assessment, Int Oil Spill Conf. Proc., 1991, pp. 363-369,
https://doi.org/10.7901/2169-3358-1991-1-363.
[3] P. A. Behnisch, K. Hosoe, S. Sakai, Bioanalytical Screening Methods for Dioxins and Dioxin-Like Compounds - A Review of Bioassay/Biomarker Technology, Environ. Int., Vol. 27, 2001, pp. 413-439, https://doi.org/10.1016/S0160-4120(01)00028-9.
[4] L. M. Weis, M. Rummel, S. J. Masten, J. E. Trosko, J. E., B. L. Upham, Bay or Baylike Regions of Polycyclic Aromatic Hydrocarbons were Potent Inhibitors of Gap Junctional Intercellular Communication, Environ, Health Perspect., Vol. 106, 1998, pp. 17-22, https://doi.org/10.2307/3433628.
[5] M. Machala, L. Svihalkova-Sindlerova, K. Pencikova, P. Krcmar, J. Topinka, A. Milcova, Z. Novakova, A. Kozubik, J. Vondracek. Effects of Methylated Chrysenes on AhR-Dependent and -Independent Toxic Events in Rat Liver Epithelial Cells, Toxicology, Vol. 247, 2008, pp. 93-101, https://doi.org/10.1016/j.tox.2008.02.008.
[6] Z. Wang, M. Fingas, Y. Y. Shu, L. Sigouin,
M. Landriaults, P. Lambert, R. Turpin,
P. Campana, J. Mullin, Quantitative Characterization of PAHs in Burn Residue and Soot Samples and Differentiation of Pyrogenic PAHs from Petrogenic PAHs-The 1994 Mobile Burn Study, Environ. Sci. Technol., Vol. 33, 1999, pp. 3100-3109, http://dx.doi.org/10.1021/es990031y.
[7] L. H. Tuyen, N. M. Tue, S. Takahashi, G. Suzuki, P.H. Viet, A. Subramanian, K.A. Bulbule,
P. Parthasarathy, A. Ramanathan, S. Tanabe, Methylated and Unsubstituted Polycyclic Aromatic Hydrocarbons in Street Dust from Vietnam and India: Occurrence, Distribution and in Vitro Toxicity Evaluation, Environ, Pollut., Vol. 194, 2014, pp. 272-280, http://dx.doi.org/10.1016/j.envpol.2014.07.029.
[8] N. T. Q. Hoa, H. Q. Anh, N. M. Tue, N. T. Trung, L. N. Da, T. V. Quy, N. T. A. Huong, G. Suzuki, S. Takahashi, S. Tanabe, P. C. Thuy, P. T. Dau, P. H. Viet, L. H. Tuyen, Soil and Sediment Contamination by Unsubstituted and Methylated Polycyclic Aromatic Hydrocarbons in an Informal E-waste Recycling Area, Northern Vietnam: Occurrence, Source Apportionment, and Risk Assessment, Sci. Total Eviron., Vol. 709, 2020, pp. 135852,
http://doi.org/10.1016/j.scitotenv.2019.135852.
[9] H. Q. Anh, N. M. Tue, L. H. Tuyen, T. B. Minh, P. H. Viet, S. Takahashi, Polycyclic Aromatic Hydrocarbons and Their Methylated Derivatives in Settled Dusts from End-of-life Vehicle Processing, Urban, and Rural Areas, Northern Vietnam: Occurrence, Source Apportionment and Risk Assessment, Sci. Total Eviron., Vol. 672, 2019, pp. 468-478, https://doi.org/10.1016/j.scitotenv.2019.04.018.
[10] H. Q. Anh, I. Watanabe, N. M. Tue, L. H. Tuyen, P. H. Viet, N. K. Chi, T. B. Minh, S. Takahashi, Polyurethane Foam-based Passive Air Sampling for Simultaneous Determination of POP- and PAH-related Compounds: A Case Study in Informal Waste Processing and Urban Areas, Northern Vietnam, Chemosphere, Vol. 247, 2020, pp. 125991, https://doi.org/10.1016/j.chemosphere.2020.125991.
[11] A. Q. Hoang, S. Takahashi, N. D. Le, T. T. H. Hoang, T. T. Duong, T. M. H. Pham, T. D. Nguyen, T. X. B. Phung, T. A. H. Nguyen, H. T. Le, M. T. Nguyen, M. B. Tu, Y. T. H. Nguyen, T. M. L. Nguyen, V. P. Phung, T. P. Q. Le, Unsubstituted and Methylated PAHs in Surface Sediment of Urban Rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, Profiles, Sources, and Ecological Risk Assessment, Bull. Environ. Contam. Toxicol., Vol. 107, 2021,
pp. 475-486, https://doi.org/10.1007/s00128-021-03174-y.
[12] M. Kishida, K. Imamura, Y. Maeda, T. T. N. Lan, N. T. P. Thao, P. H. Viet, Distribution of Persistent Organic Pollutants an Polycyclic Aromatic Hydrocarbons in Sediment Samples from Vietnam, J. Healthy Sci., Vol. 53, 2007,
pp. 291-301, https://doi.org/10.1248/jhs.53.291.
[13] M. P. Zakaria, H. Takada, S. Tsutsumi, K. Ohno, J. Yamada, E. Kouno, H. Kumata, Distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in Rivers and Estuaries in Malaysia: A Widespread Input of Petrogenic PAHs, Environ. Sci. Technol., Vol. 36, 2002, pp. 1907=1918, https://doi.org/10.1021/es011278.
[14] R. Boonyatumanond, G. Wattayakorn, A. Togo, H. Takada, Distribution and Origins of Polycyclic Aromatic Hydrocarbons (PAHs) in Riverine, Estuarine, and Marine Sediments in Thailand, Mar. Pollut. Bull., Vol. 52, 2006, pp. 942-956, https://doi.org/10.1016/j.marpolbul.2005.12.015.
[15] M. Saha, A. Togo, K. Mizukawa, M. Murakami, H. Takada, M. P. Zakaria, N. H. Chiem, B. C. Tuyen, M. Prudente, R. Boonyatumanond, S. K. Sarkar, B. Bhattacharya, P. Mishra, T. S. Tana, Sources of Sedimentary PAHs in Tropical Asian Waters: Differentiation between Pyrogenic and Petrogenic Sources by Alkyl Homolog Abundance, Mar. Pollut. Bull., Vol. 58, 2009, pp. 189-200, https://doi.org/10.1016/j.marpolbul.2008.04.049.
[16] F. Bateni, A, Mehdinia, L. Lundin, M. S. Hashtroudi, Distribution, Source and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in the Sediments of Northern Part of the Persian Gulf, Chemosphere, Vol. 295, 2022, pp. 133859, https://doi.org/10.1016/j.chemosphere.2022.133859.
[17] D. Merhaby, S. Net, J. Halwani, B. Ouddane, Organic Pollution in Surficial Sediments of Tripoli Harbour, Lebanon, Mar. Pollut. Bull., Vol. 93, 2015, pp. 284-293, https://doi.org/10.1016/j.marpolbul.2015.01.004.
[18] H. I. A. Shafy, M. S. M. Mansour, A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impacts, Effect on Human Health and Remediation, Egyptian Journal of Petroleum, Vol. 25, 2016, pp. 107-123,
https://doi.org/10.1016/j.ejpe.2015.03.011.