Ta Thuy Nguyen, Le Vu, Chu Ngoc Chau, Nguyen Thi Thanh Huyen, Dang Van Long, Phung Duc Hoa, Tu Binh Minh, Dao Thi Hai Yen, Tran Manh Tri

Main Article Content

Abstract

In this report, the method for the determination of BADGE and its derivatives in dust samples has been optimized. The recoveries of the surrogate standard (d6-BADGE) and target compounds (in matrix spiked) were in the ranges of 78.5–99.0% and 75.4–116% (SD < 10.0), respectively. Total concentrations of BADGEs in indoor dust ranged from no detection (ND) to 6640 ng/g (mean: 950 ng/g and median: 434 ng/g). The mean (median) concentrations of four BADGEs in indoor dust samples collected from public places, homes, laboratories, and offices were 1630 (830), 957 (434), 707 (375), and 344 (170) ng/g, respectively. Among BADGEs, BADGE.2H2O was found at the highest levels with the ranges of ND–4880 ng/g (mean: 634, and median: 247) in indoor dust from all micro-environments. A significant correlation existed between the sum concentrations of two pairs: BADGE + BADGE.H2O and BADGE.2H2O + BADGE.HCl.H2O. Based on the measured concentration of BADGEs in indoor dust, the estimated exposure doses to BADGEs through dust ingestion were respectively in ranges of 0.406-1.92 and 0.351–1.66 ng/kg-bw/d for women and men.

Keywords: Bisphenol; BADGEs, Indoor dust; Human exposure.*

References

[1] L. Coulier, L. E. Bradley, C. R. Bas, C. K. Verhoeckx, M. Driffield, N. Harmer, L. Castle, Analysis of Reaction Products of Food Contaminants and Ingredients: Bisphenol a Diglycidyl Ether (BADGE) in Canned Foods,
J. Agric. Food Chem., Vol. 58, 2010, pp. 4873-4882, https://doi.org/10.1021/jf904160a.
[2] N. Sxczepanska, B. Kudlak, J. Namiesnik, Assessing Ecotoxicity and the Endocrine Potential of Selected Phthalates, BADGE and BFDGE Derevatives in Relation to Environmentally Detectable Levels, Sci. Total Environ., Vol. 610-611, 2018, pp. 854-866, https://doi.org/10.1016/j.scitotenv.2017.08.160.
[3] J. Xue, Y. Liu, D. Yang, Y. Zhao, Y. Cai, T. Zhang, K. Kannan, A Review of Properties, Production, Human Exposure, Biomonitoring, Toxicity, and Regulation of Bisphenol a Diglycidyl Ether and Novolac Glycidyl Ethers, Environ. Chem. Ecotoxicol., Vol. 4, 2022, pp. 216-230, https://doi.org/10.1016/j.enceco.2022.11.002.
[4] C. Zhang, J. Hu, J. Song, M. Wu, Z. Zhang, Development of ic-ELISAs for the Detection of Bisphenol a Diglycidyl Ether and its Derivatives in Canned Luncheon Meats, ACS Food Sci. Technol., Vol. 2, 2022, pp. 160-168,
https://doi.org/10.1021/acsfoodscitech.1c00393.
[5] T. M. Tran, T. B. Minh, A. T. Kumosani, K. Kannan, Occurrence of Phthalate Diesters (Phthalates), p-Hydroxybenzoic Acid Esters (Parabens), Bisphenol a Diglycidyl Ether (BADGE) and Their Derivatives in Indoor Dust from Vietnam: Implications for Exposure, Chemosphere, Vol. 144, 2016, pp. 1553-1559, https://doi.org/10.1016/j.chemosphere.2015.10.028.
[6] D. Wang, H. Zhao, X. Fei, S. A. Synder, M. Fang, M. Liu, a Comprehensive Review on the Analytical Method, Occurrence, Transformation and Toxicity of a Reactive Pollutant: BADGE, Environ. Int., Vol. 155, 2021, pp. 106701, https://doi.org/10.1016/j.envint.2021.106701.
[7] L. Wang, Y. Wu, W. Zhang, K. Kannan, Widespread Occurrence and Distribution of Bisphenol A Diglycidyl Ether (BADGE) and Its Derivatives in Human Urine from the United States and China, Environ. Sci. Technol., Vol. 46, 2012, pp. 12968-12976, https://doi.org/10.1021/es304050f.
[8] M. Liu, S. Jia, T. Dong, Y. Han, J. Xue, E. R. Wanjiaya, M. Fang, The Occurrence of Bisphenol Plasticizers in Paired Dust and Urine Samples and Its Association with Oxidative Stress, Chemosphere, Vol. 216, 2019, 472-478, https://doi.org/10.1016/j.chemosphere.2018.10.090.
[9] J. Xue, A. K. Venkatesan, Q. Wu, R. U. Halden, K. Kannan, Occurrence of Bisphenol a Diglycidyl Ethers (BADGEs) and Novolac Glycidyl Ethers (NOGEs) in Archived Biosolids from the U.S. EPA’s Targeted National Sewage Sludge Survey, Environ. Sci. Technol., Vol. 49, No. 11, 2015, pp. 6538-6544, https://doi.org/10.1021/acs.est.5b01115.
[10] J. Xue, K. Kannan, Mass Flows and Removal of Eight Bisphenol Analogs, Bisphenol A Diglycidyl Ether and Its Derivatives in Two Wastewater Treatment Plants in New York State, USA, Sci. Total Environ., Vol. 648, 2019, pp. 442-449, https://doi.org/10.1016/j.scitotenv.2018.08.047.
[11] H. Petersen, A. Schaefer, A. C. Buckow, J. T. Simat, H. Steinhart, Determination of Bisphenol A Diglycidyl Ether (BADGE) and Its Derivatives in Food: Identification and Quantification by Internal Standard, Eur. Food Res. Technol., Vol. 216, 2003, pp. 355-364, http://dx.doi.org/10.1007/s00217-002-0648-1.
[12] A. G. Asimakopoulos, N. S. Thomaidis, K. Kannan, Widespread Occurrence of Bisphenol A Diglycidyl Ethers, p-Hydroxybenzoic Acid Esters (Parabens), Benzophenone Type-UV Filters, Triclosan, and Triclocarbanin Human Urine from Athens, Greece, Sci. Total Environ., Vol. 470-471, 2014, pp. 1243-1249, https://doi.org/10.1016/j.scitotenv.2013.10.089.
[13] J. Xue, Q. Wu, S. Sakthivel, V. P. Pavithran, R. J. Vasukutty, K. Kannan, Urinary Levels of Endocrine-Disrupting Chemicals, Including Bisphenols, Bisphenol a Diglycidyl Ethers, Benzophenones, Parabens, and Triclosan in Obese and Nonobese Indian, Environ. Res., Vol. 137, 2015, pp. 120-128, https://doi.org/10.1016/j.envres.2014.12.007.
[14] T. Hanaoka, N. Kawamura, K. Hara, S. Tsugane, Urinary Bisphenol a and Plasma Hormone Concentration in Male Workers Exposure to Bisphenol A Diglycidyl Ether and Mixed Organic Solvents, Occup. Environ. Med., Vol. 59, 2002, pp. 625-628, https://doi.org/10.1136/oem.59.9.625.
[15] L. Wang, C. Liao, F. Liu, Q. Wu, Y. Guo, B. H. Moon, H. Nakata, K. Kannan, Occurrence and Human Exposure of p-Hydroxybenzoic Acid Esters (Parabens), Bisphenol A Diglycidyl Ether (BADGE), and Their Hydrolysis Products in Indoor Dust from the United States and Three East Asian Countries, Environ. Sci. Technol.,
Vol. 46, 2012, pp. 11584-11593, https://doi.org/10.1021/es303516u.
[16] L. Wang, J. Xue, K. Kannan, Widespead Occurrence and Accumulation of Bisphenol a Diglycidyl Ether (BADGE), Bisphenol F Diglycidyl Ether (BFDGE) and Their Derivatives in Human Blood and Adipose Fate, Environ. Sci. Technol., Vol. 49, No. 5, 2015, pp. 3150-3157, https://doi.org/10.1021/acs.est.5b00096.
[17] M. Kuwamura, K. Tanaka, A. Onoda, K. Taki, C. Koriyama, K. Kitagawa, T. Kawamoto, M. Tsuji, Measurement of Bisphenol a Diglycidyl Ether (BADEG), BADGE Derivatives, and Bisphenol F Diglycidyl Ether (BFDGE) in Japanese Infants with NICU Hospitalization History, BMC Pediatrics, Vol. 24, 2024, pp. 26, https://doi.org/10.1186/s12887-023-04493-1.
[18] H. Nakazawa, A. Yamaguchi, K. Inouea, T. Yamazaki, K. Katoa, Y. Yoshimuraa, T. Makinoc, In Vitro Assay of Hydrolysis and Chlorohydroxy Derivatives of Bisphenol a Diglycidyl Ether for Estrogenic Activity, Food and Chem. Toxicol., Vol. 40, 2002, pp. 1827-1832, https://doi.org/10.1016/s0278-6915(02)00165-5.
[19] J. U. Hyoung, J. Y. Yang, K. S. Kwon, H. J. Yoo, C. S. Myoung, C. S. Kim, P. Y. Hong, Developmental Toxicity by Exposure to Bisphenol a Diglycidyl Ether During Gestation and Lactation Period in Sprague-dawley Male Rats, J. Prev. Med. Public Health, Vol. 40, No. 2, 2007, pp. 155-161, https://doi.org/10.3961/jpmph.2007.40.2.155.
[20] R. Graciela, V. Iago, L. Jorge, V. M. Juan, C. G. Ana, Cytotoxic Effects of BADGE (Bisphenol a Diglycidyl Ether) and BFDGE (Bisphenol F Diglycidyl Ether) on Caco-2 Cells in Vitro, Arch. Toxicol., Vol. 80, 2006, pp. 748-755,
https://doi.org/10.1007/s00204-006-0121-1.
[21] M. J. Williams, T. Lindkvist, T. J. Mothes, H. B. Schioth, Exposure to the Environmental Pollutant Bisphenol a Diglycidyl Ether (BADGE) Causes Cell Over-Proliferation in Drosophila, Environ, Sci. Pollut. Res. Int., Vol. 27, No. 20, 2020, pp. 25261-25270, https://doi.org/10.1007/s11356-020-08899-7.
[22] M. Liu, S. Jia, T. Dong, F. Zhao, T. Xu, Q. Yang, J. Gong, M. Fang, Metabolomic and Transcriptomic Analysis of MCF-7 Cell Exposed to 23 Chemicals at Human-Relevant Levels: Estimation of Individual Chemical Contribution to Effects, Environ. Health Perspect., Vol. 128, No. 12, 2020, 127008, https://doi.org/10.1289/ehp6641.
[23] A. Marqueno, E. Perez-Albaladejo, C. Flores, E. Mouano, C. Porte, Toxic Effect of Bisphenol a Diglycidyl Ether and Derivatives in Human Placental Cells, Environ. Pollut., Vol. 244, 2019, pp. 513-521, https://doi.org/10.1016/j.envpol.2018.10.045.
[24] L. M. Thuy, D. T. Lieu, V. D. Nam, N. T. Ngoc, D. H. Anh, T. M. Tri, Determination of Bisphenol in Indoor Dust Samples by Liquid Chromatography in Commbination with Quadrupole Mass Spectrometry (LC-MS/MS), VNU Journal of Science: Natural Sciences and Technology, Vol. 38, No. 3, 2022, pp. 113-122, https://doi.org/10.25073/2588-1140/vnunst.5461.
[25] P. T. B. Ngan, N. T. Hien, N. D. Hong, Some General Comments on the Anthropometric Characteristics of Vietnamese People of Working Age in 2018-2019 (Vietnamese), J. of Safety - Health & Working Environment, Vol. 1-3, 2019, pp. 95-101, http://vnniosh.vn/chitiet_NCKH/id/24899/Mot-so-nhan-xet-tong-quat-ve-dac-diem-nhan-trac-nguoi-Viet-Nam-trong-lua-tuoi-lao-dong-nam-2018-2019.