Nguyen Hoang Hao, Nguyen Thi Ngoc Anh, Nguyen Duy Kien, Hoang Yen Nhi, Phan Dinh Khanh Nguyen, Nguyen Thi Hoa, Phung Thi Lan, Nguyen Van Thuc

Main Article Content

Abstract

In the present work, CeO2 with different loading were embedded  on reduced graphene oxide (rGO) by a simple one-pot hydrothermal method. The synthesized samples were characterized using XRD, EDX mapping, FESEM and UV-Vis DRS techniques. The photocatalytic activity of the as-synthesized CeO2, rGO, and 0,5% (1,5% and 5,0% wt )CeO2/rGO was studied by monitoring the degradation of Rhodamine B dye (denotes RhB) under xenon light irradiation. The analyses show that CeO2 particles were evenly dispersed on rGO and the optical properties of the xCeO2/Rgo (x = 0,5; 1,5; and 5,0%wt)/rGO material were significantly enhanced due to the interaction between CeO2 anf rGO. The effects of CeO2 loading, initial RhB concentration and pH were thoroughly investigated.  Under the irradiation, the RhB degradation reached 100% over 1.5%CeO2/rGO. tThe high performance of the synthesized composites was attributed to the significant suppression of the recombination rate of photo-generated electron - hole pairs due to charge transfer between rGO sheets and CeO2 particles and the smaller optical band-gap in the CeO2/rGO nanocomposite.

Keywords: Reduced graphene oxide (rGO), CeO2, Rhodamine B, photocatalysis.

References

[1] Saravanan, P. S. Kumar, R. V. Hemavathy, S. Jeevanantham, P. Harikumar, G. Priyanka, D. R. A. Devakirubai, A Comprehensive Review on Sources, Analysis and Toxicity of Environmental Pollutants and its Removal Methods from Water Environment, Science of the Total Environment, Vol. 812, 2022, pp. 152456, https://doi.org/10.1016/j.scitotenv.2021.152456.
[2] A. Nishat, M. Yusuf, A. Qadir, Y. Ezaier, V. Vambol, M. I. Khan, S. B. Moussa, H. Kamyab, S. S. Sehgal, C. Prakash, H. H. Yang, H. Ibrahim, S. M. Eldin, Wastewater Treatment: A Thort Tssessment on Available Techniques, Alexandria Engineering Journal, Vol. 76, 2023, pp. 505-516, https://doi.org/10.1016/j.aej.2023.06.054.
[3] A. Saravanan, P. S. Kumar, S. Jeevanantham, S. Karishma, B. Tajsabreen, P. R. Yaashikaa, B. Reshma, Effective Water/wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications Towards Sustainable Development, Chemosphere, Vol. 280, 2021, pp. 130595, https://doi.org/10.1016/j.chemosphere.2021.130595.
[4] G. Ren, H. Han, Y. Wang, S. Liu, J. Zhao, X. Meng, Z. Li, Recent Advances of Photocatalytic Application in Water Treatment: A Review. Nanomaterials Vol. 11, No. 7, 2021, pp. 1804, https://doi.org/10.3390/nano11071804.
[5] A. A. Fauzi, A. A. Jalil, N. S. Hassan, F. F. A. Aziz, M. S. Azami, I. Hussain, R. Saravanan, D. V. N. Vo, A Critical Review on Relationship of CeO2-based Photocatalyst Towards Mechanistic Degradation of Organic Pollutant, Chemosphere, Vol. 286, Part 1, 2022, pp. 131651, https://doi.org/10.1016/j.chemosphere.2021.131651.
[6] J. Yao, Z. Gao, Q. Meng, G. He, H. Chen, One-Step Synthesis of Reduced Graphene Oxide Based Ceric Dioxide Modified with Cadmium Sulfide (CeO2/CdS/RGO) Heterojunction With Enhanced Sunlight-driven Photocatalytic Activity, Journal of Colloid and Interface Science, Vol. 594, 2021, pp. 621-634, https://doi.org/10.1016/j.jcis.2021.03.034.
[7] B. Sun, W. Chen, W. Zheng, H. Zhang, T. X. Liu, A. Elmarakbi, Y. Q. Fu, In-situ Controlled Growth of Ultrafine CeO2 Nanoparticles on Reduced Graphene Oxides for Efficient Photocatalytic Degradation, Journal of Catalysis, Vol. 424, 2023, pp. 106-120, https://doi.org/10.1016/j.jcat.2023.05.014.
[8] M. T. Qamar, S. Iqbal, M. Aslam, A. Alhujaily, A. Bilal, K. Rizwan, H. M. U. Farooq, T. A. Sheikh, A. Bahadur, N. S. Awwad, H. A. Ibrahium, R. S. Almufarij, E. B. Elkaeed, Transition Metal Doped CeO2 for Photocatalytic Removal of 2- Chlorophenol in the Exposure of Indoor White Light and Antifungal Activity, Front. Chem, Vol. 11, 2023, pp. 1126171, https://doi.org/10.3389/fchem.2023.1126171.
[9] H. Yan, N. Zhang, D. Wang, Highly Efficient CeO2-Supported Noble-metal Catalysts: From Single Atoms to Nanoclusters, Chem Catalysis, Vol. 2, Issue 7, 2022, pp. 1594-1623, https://doi.org/10.1016/j.checat.2022.05.001.
[10] W. Fan, Q. Zhang, Y. Wang, Semiconductor-Based Nanocomposites for Photocatalytic H2 Production and CO2 Conversion, Phys. Chem. Chem. Phys. Vol. 15, 2013, pp. 2632-2649, https://doi.org/10.1039/c2cp43524a.
[11] D. Zhu, Z. Dong, F. Lv, C. Zhong, W. Huang, The Development of Balanced Heterojunction Photocatalysts, Cell Reports Physical Science, Vol. 3, Issue 10, 2022, pp. 101082, https://doi.org/10.1016/j.xcrp.2022.101082.
[12] B. Gupta, N. Kumar, K. Panda, Role of Oxygen Functional Groups in Reduced Graphene Oxide for Lubrication. Sci Rep. Vol. 7, 2017, pp. 45030, https://doi.org/10.1038/srep45030.
[13] Aziz, A. F. Ismail, M. H. D. Othman, M. A. Rahman, F. Aziz, N. Yusof, R. Mohamud, Tuning the Oxygen Functional Groups in Graphene Oxide Nanosheets by Optimizing the Oxidation Time, Physica E: Low-dimensional Systems and Nanostructures, Vol. 131, 2021, pp. 114727, https://doi.org/10.1016/j.physe.2021.114727.
[14] M. A. Abbasi, K. M. Amin, M. Ali, Z. Ali, M. Atif, W. Ensinger, W. Khalid, Synergetic Effect of Adsorption-Photocatalysis by GO−CeO2 Nanocomposites for Photodegradation of Doxorubicin, Journal of Environmental Chemical Engineering, Vol. 10, Issue 1, 2022, pp. 107078, https://doi.org/10.1016/j.jece.2021.107078.
[15] F. Nemati, M. Rezaie, H. Tabesh, K. Eid, G. Xu, M. R. Ganjali, M. Hosseini, C. Karaman, N. Erk, P. L. Show, N. Zare, H. K. Maleh, Cerium Functionalized Graphene Nano-Structures and Their Applications; A Review, Environmental Research, Vol. 208, 2022, pp. 112685, https://doi.org/10.1016/j.envres.2022.112685.
[16] A. Murali, Y. P. Lan, P. K. Sarswat, M. L. Free, Synthesis of CeO2/Reduced Graphene Oxide Nanocomposite for Electrochemical Determination of Ascorbic Acid and Dopamine and for Photocatalytic Applications, Materials Today Chemistry, Vol. 12, 2019, pp. 222-232, https://doi.org/10.1016/j.mtchem.2019.02.001.
[17] R. Liu, Y. Liu, C. Liu, S. Luo, Y. Teng, L. Yang, R. Yang, Q. Cai, Enhanced Photoelectrocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid by CuInS2 Nanoparticles Deposition onto TiO2 Nanotube Arrays, J. Alloys Compd, Vol. 509, Issue 5, 2011, pp. 2434-2440, https://doi.org/10.1016/j.jallcom.2010.11.040.
[18] K. S. Divya, A. Chandran, V. N. Reethu, S. Mathew, Enhanced Photocatalytic Performance of RGO/Ag Nanocomposites Produced via a Facile Microwave Irradiation for the Degradation of Rhodamine B in Aqueous Solution, Applied Surface Science, Vol. 444, 2018, pp. 811-818, https://doi.org/10.1016/j.apsusc.2018.01.303.
[19] D. Zhang, S. Cui, J. Yang, Preparation of Ag2O/g-C3N4/Fe3O4 Composites and the Application in the Photocatalytic Degradation of Rhodamine B Under Visible Light, Journal of Alloys and Compounds, Vol. 708, 2017, pp. 1141-1149, https://doi.org/10.1016/j.jallcom.2017.03.095.
[20] F. Chang, J. Zheng, X. Wang, Q. Xua, B. Deng, X. Hu, X. Liu, Heterojuncted Non-Metal Binary Composites Silicon Carbide/g-C3N4 with Enhanced Photocatalytic Performance, Materials Science in Semiconductor Processing, Vol. 75, 2018, pp. 183-192, https://doi.org/10.1016/j.mssp.2017.11.043.
[21] N. R. Khalid, U. Mazia, M. B. Tahir, N. A. Niaz, M. A. Javid, Photocatalytic Degradation of RhB from an Aqueous Solution Using Ag3PO4/N-TiO2 Heterostructure, Journal of Molecular Liquids, Vol. 313, 2020, pp. 113522,
https://doi.org/10.1016/j.molliq.2020.113522.
[22] Q. Liang, J. Jin, C. Liu, S. Xu, Z. Li, Constructing a Novel p-n Heterojunction Photocatalyst LaFeO3/g-C3N4 with Enhanced Visible-light-Driven Photocatalytic Activity, Journal of Alloys and Compounds, Vol. 709, 2017, pp. 542-548, https://doi.org/10.1016/j.jallcom.2017.03.190.
[23] P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like N-doped MoS2 for Photocatalytic Degradation of RhB by Visible Light Irradiation, Nanotechnology, Vol. 27, 2016, pp. 225403-225410, https://doi.org/10.1088/0957-4484/27/22/225403.
[24] A. A. Kahtani, Photocatalytic Degradation of Rhodamine B Dye in Wastewater Using Gelatin/CuS/PVA Nanocomposites under Solar Light Irradiation. Journal of Biomaterials and Nanobiotechnology, Vol. 8, 2017, pp. 66-82, https//doi.org/10.4236/jbnb.2017.81005.
[25] R. Liu, Y. Liu, C. Liu, S. Luo, Y. Teng, L. Yang, R. Yang, Q. Cai, Enhanced Photoelectrocatalytic Degradation of 2,4-Dichlorophenoxyacetic Acid by CuInS2 Nanoparticles Deposition onto TiO2 Nanotube Arrays,Journal of Alloys and Compounds, Vol. 509, Issue 5, 2011, pp. 2434-2440, https://doi.org/10.1016/j.jallcom.2010.11.040.