Preparation and Characterization of Epoxy-Based Composite Materials Reinforced with Graphene Oxide
Main Article Content
Abstract
In this study, modified graphene oxide (GO) with γ-APS silane coupling agent before being dispersed into an epoxy/4,4’-diamino diphenyl methane matrix to prepare a composite material using the bar-coating technique. The modified GO materials with the γ-APS silane (GOS) were characterized by infrared spectrum, Zeta potential, and TG/DSC thermal analysis. The amount of silane grafted on the GO is ~ 3.3 wt.%; the Zeta potential value shifted from the negative to the positive region was observed on the surface potential distribution diagram. Scanning electron microscopy, DSC thermal analysis, and dielectric constant were used to characterize the obtained composite epoxy/GO material properties. The results show that graphene oxide, after modification with γ-APS silane agent, has good dispersion ability in the epoxy resin matrix. Composite material epoxy/GOS presented a high dielectric constant value (εaverage = 6.19, at 1 kHz), increasing thermal stability, which is a suitable material promising for future applications.
References
[2] H. N. K. Al Salman, C. Y. Hsu, Z. N. Jawad, Z. H. Mahmoud, F. Mohammed, A. Saud, Z. I. A. Mashhadani, L. S. A. Hadal, E. Kianfar, Graphene Oxide-Based Biosensors for Detection of Lung Cancer: A Review, Results in Chemistry, Vol. 7, 2024, pp. 101300, https://doi.org/10.1016/j.rechem.2023.101300.
[3] K. Z. Riahi, N. Sdiri, D. J. Ennigrou, K. H. Naifer, Investigations on Electrical Conductivity and Dielectric Properties of Graphene Oxide Nanosheets Synthetized from Modified Hummer’s Method, Journal of Molecular Structure, Vol. 1216, 2020, pp. 128304, https://doi.org/10.1016/j.molstruc.2020.128304.
[4] A. D. Sontakke, S. Tiwari, M. K. Purkait, A Comprehensive Review on Graphene Oxide-based Nanocarriers: Synthesis, Functionalization and Biomedical Applications, FlatChem, Vol. 38, 2023, pp. 100484,
https://doi.org/10.1016/j.flatc.2023.100484.
[5] S. Wan, H. Bi, Y. Zhou, X. Xie, S. Su, K. Yin, L. Sun, Graphene Oxide as High-performance Dielectric Materials for Capacitive Pressure Sensors, Carbon, Vol. 114, 2017, pp. 209-216, https://doi.org/10.1016/j.carbon.2016.12.023.
[6] M. Sohail, M. Saleem, S. Ullah, N. Saeed, A. Afridi, M. Khan, M. Arif, Modified and Improved Hummer's Synthesis of Graphene Oxide for Capacitors Applications, Modern Electronic Materials, Vol. 3, No. 3, 2017, pp. 110-116, https://doi.org/10.1016/j.moem.2017.07.002.
[7] Y. Zhao, X. Zhang, J. Liu, C. Wang, J. Li, H. Jin, Graphene Oxide Modified Nano-sized BaTiO3 as Photocatalyst, Ceramics International, Vol. 4, No. 13, 2018, pp. 15929-15934, https://doi.org/10.1016/j.ceramint.2018.06.013.
[8] A. I. Madbouly, W. S. Hassanien, M. Morsy, Tailoring the Polyurethane Foam/rGO/BaTiO3 Pressure Sensor for Human Activities, Diamond and Related Materials, Vol. 136, 2023, pp. 109940, https://doi.org/10.1016/j.diamond.2023.109940.
[9] S. Y. Jun, S. Park, N. W. Baek, T. Y. Lee, S. Yoo, D. Jung, J. Y. Kim, Enhancement of Dielectric Performance of Encapsulation in Barium Titanate Oxide using Size-controlled Reduced Graphene Oxide, RSC Advances, Vol. 12, No. 26, 2022, pp. 16412-16418, https://doi.org/10.1039/d2ra01266a.
[10] Y. Su, M. Zhou, G. Sui, J. Lan, H. Zhang, X. Yang, Polyvinyl Butyral Composites Containing Halloysite Nanotubes/reduced Graphene Oxide with High Dielectric Constant and Low Loss, Chemical Engineering Journal, Vol. 394, 2020, pp. 124910, https://doi.org/10.1016/j.cej.2020.124910.
[11] Z. Chen, Y. Liu, L. Fang, P. Jiang, X. Huang, Role of Reduced Graphene Oxide in Dielectric Enhancement of Ferroelectric Polymers Composites, Applied Surface Science, Vol. 470, 2019, pp. 348-359, https://doi.org/10.1016/j.apsusc.2018.11.150.
[12] T. T. M. Phan, N. C. Chu, V. B. Luu, H. Nguyen Xuan, D. T. Pham, I. Martin, P. Carrière, Enhancement of Polarization Property of Silane-Modified BaTiO3 Nanoparticles and its Effect in Increasing Dielectric Property of Epoxy/BaTiO3 Nanocomposites, Journal of Science: Advanced Materials and Devices, Vol. 1, No. 1, 2016, pp. 90-97, https://doi.org/10.1016/j.jsamd.2016.04.005.
[13] T. Kavinkumar, P. Senthilkumar, S. Dhanuskodi, S. Manivannan, Dielectric Transition and Ferroelectric Properties of Graphene Oxide-Barium Titanate Nanocomposites, Journal of the European Ceramic Society, Vol. 37, No. 4, 2017, pp. 1401-1409, https://doi.org/10.1016/j.jeurceramsoc.2016.11.026.
[14] S. Ishaq, F. Kanwal, S. Atiq, S. Noreen, M. Moussa, U. Azhar, D. Losic, Enhancement of Dielectric and Ferroelectric Properties in Flexible Polymer for Energy Storage Applications, Ceramics International, Vol. 46, No. 15, 2020, pp. 24649-24660, https://doi.org/10.1016/j.ceramint.2020.06.254.
[15] X. Zhi, Y. Mao, Z. Yu, S. Wen, Y. Li, L. Zhang, T. W. Chan, L. Liu, γ-Aminopropyl Triethoxysilane Functionalized Graphene Oxide for Composites with High Dielectric Constant and Low Dielectric Loss, Composites Part A: Applied Science and Manufacturing, Vol. 76, 2015, pp. 194-202, https://doi.org/10.1016/j.compositesa.2015.05.015.
[16] X. Huang, L. Xie, K. Yang, C. Wu, P. Jiang, S. Li, S. Wu, K. Tatsumi, T. Tanaka, Role of Interface in Highly Filled Epoxy/BaTiO3 Nanocomposites, Part I-correlation between Nanoparticle Surface Chemistry and Nanocomposite Dielectric Property, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 21, No. 2, 2014, pp. 467-479,
https://doi.org/10.1109/tdei.2013.004165.
[17] U. Sundar, Z. Lao, K. Cook-Chennault, Enhanced Dielectric Permittivity of Optimized Surface Modified of Barium Titanate Nanocomposites, Polymers, Vol. 12, No. 4, 2020, pp. 827, https://doi.org/10.3390/polym12040827.
[18] R. K. Mishra, D. Li, I. Chianella, S. Goel, S. Lotfian, H. Yazdani Nezhad, Low Electric Field Induction in BaTiO3-epoxy Nanocomposites, Functional Composite Materials, Vol. 4, No. 1, 2023, pp. 6, https://doi.org/10.1186/s42252-023-00043-1.
[19] L. T. Huyen, D. S. Duc, N. X. Hoan, N. H. Tho, N. X. Viet, Synthesis of Fe3O4-reduced Graphene Oxide Modified Tissue-paper and Application in the Treatment of Methylene Blue, VNU Journal of Science: Natural Sciences and Technology, Vol. 35, No. 3, 2019, pp. 56-63, https://doi.org/10.25073/2588-1140/vnunst.4883.
[20] V. T. V. Anh, N. T. Dung, C. N. Chau, P. T. T. Mai, N. X. Hoan, The Isoelectric Point and the Surface Charge of Barium Titanate Nanoparticles/Graphene Oxide Determined using the Electrophoretic Mobility Technique, VNU Journal of Science: Natural Sciences and Technology, Vol. 37, No. 1, 2021, pp. 28-34, https://doi.org/10.25073/2588-1140/vnunst.5114 (in Vietnamese).
[21] P. Kumar, S. Penta, S. P. Mahapatra, Dielectric Properties of Graphene Oxide Synthesized by Modified Hummers’ Method from Graphite Powder, Integrated Ferroelectrics, Vol. 202, No. 1, 2019, pp. 41-51, https://doi.org/10.1080/10584587.2019.1674822.
[22] F. Baskoro, C. B. Wong, S. R. Kumar, C. W. Chang, C. H. Chen, D. W. Chen, S. J. Lue, Graphene Oxide-cation Interaction: Inter-Layer Spacing and Zeta Potential Changes in Response to Various Salt Solutions, Journal of Membrane Science, Vol. 554, 2018, pp. 253-263, https://doi.org/10.1016/j.memsci.2018.03.006.
[23] Z. L. Wang, D. Xu, Y. Huang, Z. Wu, L. M. Wang, X. B. Zhang, Facile, Mild and Fast Thermal-Decomposition Reduction of Graphene Oxide in Air and its Application in High-Performance Lithium Batteries, Chem Commun (Camb), Vol. 48, No. 7, 2012, pp. 976-978, https://doi.org/10.1039/c2cc16239c.
[24] Y. Shen, V. Boffa, I. Corazzari, A. Qiao, H. Tao, Y. Yue, Revealing hidden endotherm of Hummers' Graphene Oxide During Low-Temperature Thermal Reduction, Carbon, Vol. 138, 2018, pp. 337-347, https://doi.org/10.1016/j.carbon.2018.05.018.
[25] O. Jankovský, D. Sedmidubský, M. Lojka, Z. Sofer, Thermal Properties of Graphite Oxide, Thermally Reduced Graphene and Chemically Reduced Graphene, AIP Conf. Proc, 1866, 2017, pp. 030004, https://doi.org/10.1063/1.4994480.