Do Huy Hoang, Trieu Thi Nguyet

Main Article Content

Abstract

ZnCo2O4 spinel nanomaterial modified in the glass phase of K2CO3 demonstrated the highly advanced oxidation in the mild condition of no light and low temperatures (5 oC) to degrade the pollutant model of methylene blue up to the yield of ~95 % (25 oC) and ~ 51% (5 oC) with a molar ratio of Zn:Co:K = 1:2:1. As-products from degrading the solution of methylene blue expressed no signal for the Uv zone in Uv-vis absorption spectra as the signature for aromatic bones which is the superiority of the material for converting methylene blue to non-aromatic compounds, even to CO2. ZnCo2O4 was prepared through the co-precipitation of bi-metallic hydroxide and then calcination with the presence of K2CO3. By XRD, EDX, SEM, and BET, it was confirmed that the product contains only one phase of cubic spinel nanocrystals with a relatively large size and a small surface area, in which the molar ratio of metals in the product is almost the same with the initial mixture.

Keywords: ZnCo2O4 /K2CO3, methylene blue, highly advanced oxidation, without light

References

M. Dhanasekar, S. Ratha, C. S. Rout, S. V. Bhat, Self-assembled nanosheets of ZnCo2O4 as efficient sonophotocatalysts for day light dye degradation, Ceramics International, Vol. 48, No. 19, 2022, pp. 29460–29464, doi: 10.1016/j.ceramint.2022.06.223.
[2] J. A. Rajesh, B.-K. Min, J.-H. Kim, H. Kim, K.-S. Ahn, “ Cubic Spinel AB2O4 Type Porous ZnCo2O4 Microspheres: Facile Hydrothermal Synthesis and Their Electrochemical Performances in Pseudocapacitor , Journal Electrochemical Society, Vol. 163, No. 10, 2016, pp. A2418–A2427, doi: 10.1149/2.0071613jes.
[3] Y. Gao, S. Cong, H. Yu, D. Zou, Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process, Separation Purification Technology, Vol. 262, No. November 2020, 2021, pp. 118330, doi: 10.1016/j.seppur.2021.118330.
[4] J. Rashid, M. A. Barakat, R. M. Mohamed, I. A. Ibrahim, Enhancement of photocatalytic activity of zinc/cobalt spinel oxides by doping with ZrO2 for visible light photocatalytic degradation of 2-chlorophenol in wastewater, Journal Photochemistry Photobiology: A Chemistry, Vol. 284, 2014, pp. 1–7, doi: 10.1016/j.jphotochem.2014.03.017.
[5] B. Cui, H. Lin, X. C. Zhao, J. B. Li, W. Di Li, Visible light induced photocatalytic activity of ZnCo2O4 nanoparticles, Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, Vol. 27, No. 10, 2011, pp. 2411–2415, doi: 10.3866/PKU.WHXB20110937.
[6] S. Hemamalini, R. Manimekalal, Synthesis, physicochemical and photocatalytic activities of nano ZnCo2O4 catalyst for photodegradation of various dyes under sunlight irradiation, Bulletin of Material Science, Vol. 44, No. 2, 2021, pp. 154-162, doi: 10.1007/s12034-021-02453-y.
[7] V. Subhiksha, A. A. Alatar, M. K. Okala, I. A. Alaraidh, A. Mhebaldin, M. Aufy, M. A. Abdel-Maksoud, L. L. Raju, A. M. Thomas, S. S. Khan, Double Z-Scheme ZnCo2O4/MnO2/FeS2 photocatalyst with enhanced photodegradation of organic compound: Insights into mechanisms, kinetics, pathway and toxicity studies, Chemosphere, Vol. 303, 2022, pp. 135177-135189, doi: 10.1016/j.chemosphere.2022.135177.
[8] B. Tan, Y. Fang, Q. Chen, X. Ao, Y. Cao, Preparation of a CaFe2O4/ZnCo2O4 composite material and its photocatalytic degradation of tetracycline, Optical Material, Vol. 109, 2020, pp. 110470-110484, doi: 10.1016/j.optmat.2020.110470.
[9] W. Liu, S. Hu, Y. Wang, B. Zhang, R. Jin, L. Hu, Anchoring Plasmonic Ag@AgCl Nanocrystals onto ZnCo2O4 Microspheres with Enhanced Visible Photocatalytic Activity, Nanoscale Research Letters, Vol. 14, No. 1, 2019, pp. 108-123, doi: 10.1186/s11671-019-2922-1.
[10] J. Yu, L. Lu, J. Li, P. Song, Biotemplated hierarchical porous-structure of ZnAl-LDH/ZnCo2O4 composites with enhanced adsorption and photocatalytic performance, RSC Advances., Vol. 6, No. 16, 2016, pp. 12797–12808, doi: 10.1039/C5RA15758G.
[11] J. M. Gonçalves, M. I. Silva, M. N.T. Silva, P. R. Martins, E. Nossol, H. E. Toma, L. Angnes, Recent progress in ZnCo2O4 and its composites for energy storage and conversion: a review, Energy Advances, No. 11, 2022, pp. 793–841, doi: 10.1039/d2ya00106c.
[12] N. S. Bajaj, R. A. Joshi, Energy materials: synthesis and characterization techniques, in Energy Materials, Elsevier, 2021, pp. 61–82. doi: 10.1016/B978-0-12-823710-6.00019-4.
[13] V. T. Tan, L. T. Vinh, T. N. Khiem, H. D. Chinh, Facile template in-situ fabrication of ZnCo2O4 nanoparticles with highly photocatalytic activities under visible-light irradiation, Bulletin of Chemical Reaction Engineering & Catalysis, Vol. 14, No. 2, 2019, pp. 404–412, doi: 10.9767/bcrec.14.2.3613.404-412.
[14] Z. Jiang, L. Feng, J. Zhu, X. Li, S. Khan, Y. Chen, Enhanced visible-light utilization with ZnCo2O4–BiErWO6 heterojunctions towards photocatalytic degradation of antibiotics, Journal Material Science: Materials in Electronics, Vol. 31, No. 20, 2020, pp. 18248–18262, doi: 10.1007/s10854-020-04373-9.