A Review on Analytical Methods for Perfluoroalkyl Substances (PFAS) in Settled Dust Samples
Main Article Content
Abstract
Perfluoroalkyl substances (PFAS) have outstanding properties such as chemically inert, thermally stable, and water/oil repellent, which have been commonly used as additives in different materials and existed in various equipment, household items, and consumer products. However, PFAS are persistent organic pollutants (POPs) because of their environmental persistence, long-range transport, bioaccumulation potentials, and toxic effects on organisms. Settled dust can serve as environmental sink of organic pollutants including PFAS, and as exposure source of these substances in humans. In general, number of studies on PFAS in settled dust is relatively limited, especially in emerging and developing countries. In this review paper, analytical methods for PFAS in settled dust samples from international publications were gathered and evaluated, including information about sampling, sample preparation, extraction, clean-up, and quality assurance/quality control techniques. To determine trace levels of PFAS in dust matrix, liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been used with advantages as high selectivity and low detection limits. Further studies on analytical method development and application in monitoring and assessment of polution status and risk of PFAS in settled dust are critically necessary.
References
[2] G. Zheng, B. E. Boor, E. Schreder, A. Salamova, Indoor Exposure to Per- and Polyfluoroalkyl Substances (PFAS) in the Childcare Environment, Environ, Pollut., Vol. 258, 2020, pp. 113714, https://doi.org/10.1016/j.envpol.2019.113714.
[3] C. Schiavone, C. Portesi, PFAS: A Review of the State of the Art, from Legislation to Analytical Approaches and Toxicological Aspects for Assessing Contamination in Food and Environment and Related Risks Contamination in Food and Environment and Related Risks, Appl. Sci., Vol. 13, 2023, pp. 6696, https://doi.org/10.3390/app13116696.
[4] S. E. Fenton, A. Ducatman, A. Boobis, J. C. DeWitt, C. Lau, C. Ng, J. S. Smith, S. M. Roberts, Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research, Environ. Toxicol. Chem., Vol. 40, 2021, pp. 606-630, https://doi.org/10.1002/etc.4890.
[5] L. Lucattini, G. Poma, A. Covaci, J. de Boer, M. H. Lamoree, P. E. G. Leonards, A Review of Semi-volatile Organic Compounds (SVOCs) in the Indoor Environment: Occurrence in Consumer Products, Indoor Air and Dust, Chemosphere, Vol. 201, 2018, pp. 466-482, https://doi.org/10.1016/j.chemosphere.2018.02.161.
[6] H. Moriwaki, Y. Takata, R. Arakawa, Concentrations of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) in Vacuum Cleaner Dust Collected in Japanese Homes, J. Environ. Monit., Vol. 5, 2003, pp. 753-757, https://doi.org/10.1039/b307147m.
[7] C. Kubwabo, B. Stewart, J. Zhu, L. Marro, Occurrence of Perfluorosulfonates and Other Perfluorochemicals in Dust From Selected Homes in the City of Ottawa, Canada, J. Environ. Monit., Vol. 7, 2005, pp. 1074-1078,
http://dx.doi.org/10.1039/b507731c.
[8] J. A. Björklund, K. Thuresson, C. A. de Wit, Perfluoroalkyl Compounds (PFCs) in Indoor Dust: Concentrations, Human Exposure Estimates, and Sources, Environ. Sci. Technol., Vol. 43, 2009, pp. 2276-2281, https://doi.org/10.1021/es803201a.
[9] J. M. Weiss, B. Jones, J. Koekkoek, A. Bignert, M. H. Lamoree, Per- and Polyfluoroalkyl Substances (PFASs) in Swedish Household Dust and Exposure of Pet Cats, Environ. Sci. Pollut. Res., Vol. 28, 2021, pp. 39001-39013,
https://doi.org/10.1007/s11356-021-13343-5.
[10] Å. Gustafsson, Å. Bergman, J. M. Weiss, Estimated Daily Intake of Per- and Polyfluoroalkyl Substances Related to Different Particle Size Fractions of House Dust, Chemosphere, Vol. 303, 2022, pp. 135061, https://doi.org/10.1016/j.chemosphere.2022.135061.
[11] M. J. Strynar, A. B. Lindstrom, Perfluorinated Compounds in House Dust From Ohio and North Carolina, USA, Environ. Sci. Technol., Vol. 42, 2008, pp. 3751-3756, https://doi.org/10.1021/es7032058.
[12] K Kato, A. M. Calafat, L. L. Needham, Polyfluoroalkyl Chemicals in House Dust, Environ. Res., Vol. 109, 2009, pp. 518-523, https://doi.org/10.1016/j.envres.2009.01.005.
[13] Y. Wu, K. Romanak, T. Bruton, A. Blum, M. Venier, Per- and Polyfluoroalkyl Substances in Paired Dust and Carpets from Childcare Centers, Chemosphere, Vol. 251, 2020, pp. 126771, https://doi.org/10.1016/j.chemosphere.2020.126771.
[14] S. Schildroth, K. M. Rodgers, M. Strynar, J. McCord, G. Poma, A. Covaci, R. E. Dodson, Per- and Polyfluoroalkyl Substances (PFAS) and Persistent Chemical Mixtures in Dust from U.S. Colleges, Environ. Res., Vol. 206, 2022,
pp. 112530, https://doi.org/10.1016/j.envres.2021.112530.
[15] E. Yamazaki, D. Lawani, Y. Ruan, S. Taniyasu, N. Hanari, N. J.I. Kumar, P. K.S. Lam, N. Yamashita, Nationwide Distribution of Per- and Polyfluoroalkyl Substances (PFAS) in Road Dust from India, Sci. Total Environ., Vol. 892, 2023, pp. 164538, http://dx.doi.org/10.1016/j.scitotenv.2023.164538.
[16] O. Ragnarsdóttir, M. A. E. Abdallah, S. Harrad, Dermal Bioaccessibility of Perfluoroalkyl Substances from Household Dust; Influence of Topically Applied Cosmetics, Environ. Res., Vol. 238, 2023, pp. 117093,
https://doi.org/10.1016/j.envres.2023.117093.
[17] A. L. Juhasz, A. Keith, R. Jones, F. Kastury, Impact of Precursors and Bioaccessibility on Childhood PFAS Exposure from House Dust, Sci. Total Environ., Vol. 889, 2023, pp. 164306, http://dx.doi.org/10.1016/j.scitotenv.2023.164306.
[18] S. Barreca, M. M. M. Mancuso, D. Sacristán, A. Pace, D. Savoca, S. Orecchio, Determination of Perfluorooctanoic Acid (PFOA) in the Indoor Dust Matter of the Sicily (Italy) Area: Analysis and Exposure Evaluations, Toxics, Vol 12, 2024, pp. 28, https://doi.org/10.3390/toxics12010028.
[19] Y. Biao, J. Xu, W. R. Chen, Factors Affecting the Occurrence and Accumulation of Perfluoroalkyl Acids in Indoor Dust in Tainan, Taiwan, Chemosphere, Vol. 349, 2024, pp. 140882, https://doi.org/10.1016/j.chemosphere.2023.140882.
[20] B. Zhang, Y. He, Y. Huang, D. Hong, Y. Yao, L. Wang, W. Sun, B. Yang, X. Huang, S. Song, X. Bai, Y. Guo, T. Zhang, H. Sun, Novel and Legacy Poly- and Perfluoroalkyl Substances (PFASs) in Indoor Dust from Urban, Industrial, and E-waste Dismantling Areas: The Emergence of PFAS Alternatives in China, Environ. Pollut., Vol. 263, 2020, pp. 114461, https://doi.org/10.1016/j.envpol.2020.114461.
[21] F. Xu, D. Chen, X. Liu, Q. Guan, H. Tan, D. Zhou, Y. Shi, J. Liu, Y. Hu, Emerging and Legacy Per- and Polyfluoroalkyl Substances in House Dust from South China: Contamination Status and Human Exposure Assessment, Environ. Res., Vol. 192, 2021, pp. 110243, https://doi.org/10.1016/j.envres.2020.110243.
[22] N. M. DeLuca, J. M. Minucci, A. Mullikin, R. Slover, E. A. C. Hubal, Human Exposure Pathways to Poly- and Perfluoroalkyl Substances (PFAS) from Indoor Media: A Systematic Review, Environ. Int., Vol. 162, 2022,
pp. 107149, https://doi.org/10.1016/j.envint.2022.107149.
[23] A. J. Fraser, T. F. Webster, D. J. Watkins, M. J. Strynar, K. Kato, A. M. Calafat, V. M. Vieira, M. D. McClean, Polyfluorinated Compounds in Dust from Homes, Offices, and Vehicles as Predictors of Concentrations Office Workers’ Serum, Environ. Int., Vol. 60, 2013, pp. 128-136, http://dx.doi.org/10.1016/j.envint.2013.08.012.
[24] A. S. Young, R. Hauser, T. M. James-Todd, B. A. Coull, H. Zhu, K. Kannan, A. J. Specht, M. S. Bliss, J. G. Allen, Impact of “Healthier” Materials Interventions on Dust Concentrations of Per- and Polyfluoroalkyl Substances, Polybrominated Diphenyl Ethers, and Organophosphate Esters, Environ. Int., Vol. 150, 2021, pp. 106151, https://doi.org/10.1016/j.envint.2020.106151.