Gene Expression and Enzymatic Activity of Alkaline Phosphatase in Different Tissues of Penaeus monodon
Main Article Content
Abstract
Black tiger shrimp (Penaeus monodon) is an economically significant seafood product in Vietnam and globally, yet shrimp farming faces various dangerous diseases leading to substantial economic losses. Understanding the molecular immune mechanisms of the shrimp is crucial for developing disease prevention solutions. Alkaline phosphatase (ALP) is an essential enzyme that influences the black tiger shrimp's immunity. However, knowledge about the enzyme’s distribution in different tissues of the shrimp and its specific spacial function remains limited. In this study, expression and enzymatic activity of ALP across six different tissues including body muscle, carapace, gill, head muscle, hemolymph, and hepatopancreas of P. monodon was investigated. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), the expression of ALP gene was found in the range: hepatopancreas > head muscle > carapace > gill, and not detectable in body muscle and hemolymph. The highest ALP gene expression occurs in the hepatopancreas, significantly differing from the other parts, 27.98, 28.87 and 75.79 times higher than head muscle, carapace, grill. Consistently, the enzymatic ALP activity was shown to be highest in the hepatopancreas (134.2 ± 16.05 mU/mg protein), followed by gill (8.6±3.5 mU/mg protein), carapace (3.3±2.2 mU/mg protein), head muscle (2.7±2.2 mU/mg protein, body muscle (1.4±0.02 mU/mg protein) and hemolymph (0.48 ± 0.022 mU/mg protein). Our results suggest that ALP expresses highest in hepatopancreas compared to other tissues in the black tiger shrimp.
References
[2] S. Thitamadee, A. Prachumwat, J. Srisala, P. Jaroenlak, P. V. Salachan, K. Sritunyalucksana, T. W Flegel, O. Itsathitphaisarn, Review of Current Disease Threats for Cultivated Penaeid Shrimp in Asia, Aquaculture, Vol. 452, 2016, pp. 69-87, https://doi.org/10.1016/J.AQUACULTURE.2015.10.028.
[3] H. M. Santos, C. Y. Tsai, K. R. A. Maquiling, L. L. Tayo, A. R. Mariatulqabtiah, C. W. Lee, K. P. Chuang, Diagnosis and Potential Treatments for Acute Hepatopancreatic Necrosis Disease (AHPND): A Review, Aquac. Int., Vol. 28, No. 1, 2020, pp. 169-185, https://doi.org/10.1007/s10499-019-00451-w.
[4] P. Amparyup, W. Charoensapsri, A. Tassanakajon, Prophenoloxidase System and its Role in Shrimp Immune Responses against Major Pathogens, Fish Shellfish Immunol., Vol. 34, No. 4, 2013, pp. 990-1001, https://doi.org/10.1016/j.fsi.2012.08.019.
[5] S. Subramanian, R. Philip, Identification of Haematological Markers in Shrimp Health Assessment from the Immune Profile of Fenneropenaeus indicus on β-1,3-glucan Administration and White Spot Syndrome Virus Challenge, Aquac. Int., Vol. 21, No. 5, 2013, pp. 1169-1184, https://doi.org/10.1007/s10499-013-9621-1.
[6] X. L. Yin, Z. J. Li, K. Yang, H. Z. Lin, Z. X. Guo, Effect of Guava Leaves on Growth and the Non-Specific Immune Response of Penaeus monodon, Fish Shellfish Immunol., Vol. 40, No. 1, 2014, pp. 190-196, https://doi.org/10.1016/j.fsi.2014.07.001.
[7] C. Wang, R. Wang, H. Yang, Y. Wang, Z. Zhang, Gene Cloning and Transcriptional Regulation of the Alkaline and Acid Phosphatase Genes in Scylla paramamosain, Gene, Vol. 810, 2022, pp. 146057, https://doi.org/10.1016/j.gene.2021.146057.
[8] N. N. Chuang, B. C. Yang, A Comparative Study of Alkaline Phosphatases among Human Placenta, Bovine Milk, Hpatopancreases of Shrimp Penaeus monodon (Crustacea: Decapoda) and Clam Meretrix lusoria (Bivalvia: Veneidae): To Obtain an Alkaline Phosphatase with Improved Characteristics as a Reporter, Comp. Biochem. Physiol. Part B: Comp. Biochem., Vol. 96, No. 4, 1990, pp. 787-789, https://doi.org/10.1016/0305-0491(90)90232-I.
[9] M. Backer, S. McSweeney, H. B. Rasmussen, B. W. Riise, P. Lindley, E. Hough, The 1.9Å Crystal Structure of Heat-labile Shrimp Alkaline Phosphatase, J. Mol. Biol., Vol. 318, No. 5, 2002, pp. 1265-1274, https://doi.org/10.1016/S0022-2836(02)00035-9.
[10] J. M. Bates, J. Akerlund, E. Mittge, K. Guillemin, Intestinal Alkaline Phosphatase Detoxifies Lipopolysaccharides and Prevents Inflammation in Zebrafish in Response to the Gut Microbiota, Cell Host Microbe, Vol. 2, No. 6, 2007, pp. 371-382, https://doi.org/10.1016/j.chom.2007.10.010.
[11] R. F. Goldberg, W. G. Austen, X. Jr, Zhang et al., Intestinal Alkaline Phosphatase is a Gut Mucosal Defense Factor Maintained by Enteral Nutrition, Proc. Natl Acad. Sci., Vol. 105, No. 9, 2008, pp. 3551-3556, https://doi.org/10.1073/pnas.0712140105.
[12] A. Tuin, A. Vlag, A. M. M. A. Loenen-Weemaes, D. K. F. Meijer, K. Poelstra, On the Role and Fate of LPS-dephosphorylating Activity in the Rat Liver, Am. J. Physiol, Gastrointest Liver Physiol., Vol. 290, No. 2, 2006, pp. 377-385, https://doi.org/10.1152/ajpgi.00147.2005.
[13] C. Beumer, Calf Intestinal Alkaline Phosphatase, A Novel Therapeutic Drug for Lipopolysaccharide (LPS)-mediated Diseases, Attenuates LPS Toxicity in Mice and Piglets, J. Pharmacol. Exp. Therapeut., Vol. 307, No. 2, 2003, pp. 737-744, https://doi.org/10.1124/jpet.103.056606.
[14] A. Tuin, K. Poelstra, A. de J. Krikken, L. Bok, W. Raaben, M. P. Velders, G. Dijkstra, Role of Alkaline Phosphatase in Colitis in Man and Rats, Gut, Vol. 58, No. 3, 2009, pp. 379-387, https://doi.org/10.1136/gut.2007.128868.
[15] Y. Yang, A. M. Wandler, J. H. Postlethwait, K. Guillemin, Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and other Vertebrates, Front, Immunol., Vol. 3, 2012, pp. 1-15, https://doi.org/10.3389/fimmu.2012.00314.
[16] L. Zhu, X. Wang, L. Hou, X. Jiang, C. Li, K. Zhang, C. Pei, X. Zhao, L. Li, X. Kong, The Related Immunity Responses of Red Swamp Crayfish (Procambarus clarkii) Following Infection with Aeromonas veronii, Aquac. Rep., Vol. 21, 2021, pp. 100849, https://doi.org/10.1016/j.aqrep.2021.100849.
[17] K. J. Livak, T. D. Schmittgen, Analysis of Relative Gene Expression Data using Real-time Auantitative PCR and the 2-DDCT Method, Methods, Vol. 25, No. 4, 2001, pp. 402-408, https://doi.org/10.1006/meth.2001.1262.
[18] M. M. Bradford, A Rapid and Sensitive Method for Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein Dye Binding, Anal. Biochem. Vol. 72, No. 1-2, 1976, pp. 234-254, https://doi.org/10.1006/abio.1976.9999.
[19] F. González, M. E. F. Vidal, J. M. Arias, E. Montoya, Partial Purification and Biochemical Properties of Acid and Alkaline Phosphatases from Myxococcus coralloides D, J. Appl. Bacteriol., Vol. 77, No. 5, 1994, pp. 567-573,
https://doi.org/10.1111/j.1365-2672.1994.tb04403.x.
[20] T. H. N. Phan, T. H. L. Nguyen, T. H. Dinh, T. N. Le, H. G. Vu, T. N. Phan, Phenoloxidases from Black Tiger Shrimp (Penaeus Monodon): Gene Expression and Activity Distribution in Different Tissues, Aquac. Int., Vol. 31, 2023, pp. 1423-1437, https://doi.org/10.1007/s10499-022-01033-z.
[21] A. C. Li, N. N. Chuong, Characterization of Different Molecular Forms of Alkaline Phosphatase in the Hepatopancreas From the Shrimp Penaeus monodon (Crustacea: Decapoda, Comp. Biochem. Physiol. Part B: Comp. Biochem., Vol. 99, 1991, pp. 845-850, https://doi.org/10.1016/0305-0491(91)90152-4.
[22] S. Sun, N. Wang, M. Zhu, Salinity Acclimation Alters Acid and Alkaline Phosphatase Expression and Histological Changes in the Hepatopancreas of the Oriental River Prawn Macrobrachium nipponense (De Haan, 1849) (Decapoda: Caridea: Palaemonidae, J. Crust. Biol., Vol. 41, No. 1, 2020, pp. 1-8, https://doi.org/10.1093/jcbiol/ruaa087.
[23] X. L. Liu et al., The Effect of Dietary Panax ginseng Polysaccharide Extract on the Immune Responses in White Shrimp, Litopenaeus Vannamei, Fish Shellfish Immunol., Vol. 30, No. 2, 2011, pp. 495-500, https://doi.org/10.1016/j.fsi.2010.11.018.
[24] S. A. Lehnert, S. E. Johnson, Expression of Hemocyanin and Digestive Enzyme Messenger RNAs in the Hepatopancreas of the Black Tiger Shrimp Penaeus monodon, Comp. Biochem. Physiol., Part B, Biochem. Mol. Biol., Vol. 133, No. 2, 2002, pp. 163-171, https://doi.org/10.1016/s1096-4959(02)00123-9.
[25] Z. F. Zhang, M. Y. Shao, K. H. Kang, Changes of Enzyme Activity and Hematopoiesis in Chinese Prawn (Osbeck) Induced by White Spot Fenneropenaeus chinensis Syndrome Virus and Zymosan A, Aquac. Res., Vol. 36, No. 7, 2005, pp. 674-681, https://doi.org/10.1111/j.1365-2109.2005.01272.x.
[26] M. S. Reddy, P. Jayaprada, K. V. R. Rao, Toxic Impact of Aldrin on Acid and Alkaline Phosphatase Activity of Penaeid Prawn, Metapenaeus monoceros: In Vitro Study, Bull. Environ. Contam. Toxicol., Vol. 46, No. 3, 1991, pp. 479-484, https://doi.org/10.1007/BF01688951.
[27] P. L. Barker, R. Gibson, Observations on the Structure of the Mouthparts, Histology of the Alimentary Tract, and Digestive Physiology of the Mud Crab Scylla serrata (Forskål) (Decapoda: Portunidae, J. Exp.. Mar Biol. Ecol., Vol. 32, No. 2, 1978, pp. 177-196, https://doi.org/10.1016/0022-0981(78)90114-4.
[28] S. V. S. Rana, On the Distribution of Enzymes in the Digestive Gland of Fresh Water Crab, Paratelphusa masoniana, Acta. Histochem. Cytochem., Vol. 7, No. 2, 1974, pp. 175-178, https://doi.org/10.1267/ahc.7.175.
[29] M. Boonyaratpalin, K. Supamattaya, V. Verakunpiriya, D. Suprasert, Effects of Aflatoxin B1 on Growth Performance, Blood Components, Immune Function and Histopathological Changes in Black Tiger Shrimp (Penaeus monodon Fabricius), Aquac. Res., Vol. 32, No. 1, 2001, pp. 388-398, https://doi.org/10.1046/j.1355-557x.2001.00046.x.
[30] M. Qiu, Y. Wang, X. Wang et al., Effects of T-2 Toxin on Growth, Immune Function, and Hepatopancreas Microstructure of Shrimp (Litopenaeus vannamei), Aquaculture, Vol. 462, 2016, pp. 35-39, https://doi.org/10.1016/j.aquaculture.2016.04.032.
[31] B. Deng, Z. P. Wang, W. J. Tao, W. F. Li, C. Wang, M. Q. Wang, S. S. Ye, Y. J. Du, X. X. Wu, D. Wu, Effects of Polysaccharides from Mycelia of Cordyceps sinensison Growth Performance, Immunity and Antioxidant Indicators of the White Shrimp Litopenaeus vannamei, Aquac. Nutr., Vol. 21, No. 2, 2015, pp. 173-179,
https://doi.org/10.1111/anu.12147.
[32] F. Liang, C. Li, T. Hou, C. Wen, S. Kong, D. Ma, C. Sun, S. Li, Effects of Chitosan-Gentamicin Conjugate Supplement on Non-specific Immunity, Aquaculture Water, Intestinal Histology and Microbiota of Pacific White Shrimp (Litopenaeus vannamei, Mar. Drugs, Vol. 18, No. 8, 2020, pp. 419, https://doi.org/10.3390/md18080419.
[33] H. Pang, G. Wang, S. Zhou, J. Wang, J. Zhao, R. Hoare, S. J. Monaghan, Z. Wang, C. Sun, Survival and Immune Response of White Shrimp Litopenaeus vannamei Following Single and Concurrent Infections with WSSV and Vibrio parahaemolyticus, Fish Shellfish Immunol., Vol. 92, 2019, pp. 712-718, https://doi.org/10.1016/j.fsi.2019.06.039.
[34] J. Sivakamavalli, B. Vaseeharan, Variations in Biochemical and Histological Characteristics of WSSV Infected Green Tiger Shrimp Penaeus semisulcatus, J. Recept. Signal. Trans. Res, Vol. 34, No. 5, 2014, pp. 386-395,
https://doi.org/10.3109/10799893.2014.904874.
[35] S. Kumar, A. K. Verma, S. P. Singh, A. Awasthi, Immunostimulants for Shrimp Aquaculture: Paving Pathway Towards Shrimp Sustainability, Env. Sci. Poll. Res., Vol. 30, 2022, pp. 25325-25343, https://doi.org/10.1007/s11356-021-18433-y.
[36] H. X. Zhao, J. M. Cao, A. L. Wang, Z. Y. Du, C. X. Ye, Y. H. Huang, H. B. Lan, T. T. Zhou, G. L. Li, Effect of Long-term Administration of Dietary β-1,3-glucan on Growth, Physiological, and Immune Responses in Litopenaeus vannamei, Aquac. Int., Vol. 20, No. 1, 2012, pp. 145-158, https://doi.org/10.1007/s10499-011-9448-6.
[37] W. He, S. Rahimnejad, L. Wang, K. Song, K. Lu, C. Zhang, Effects of Organic Acids and Essential Oils Blend on Growth, Gut Microbiota, Immune Response, and Disease Resistance of Pacific White Shrimp (Litopenaeus vannamei) Against Vibrio parahaemolyticus, Fish Shellfish Immunol., Vol. 70, 2017, pp. 164-173,
https://doi.org/10.1016/j.fsi.2017.09.007.
[38] D. T. Babu, S. P. Antony, S. P. Joseph, A. R. Bright, R. Philip, Marine yeast Candida aquaetextoris S527 as a Potential Immunostimulant in Black Tiger Shrimp Penaeus monodon, J. Invertebr. Pathol., Vol. 112, No. 3, 2013, pp. 243-252, https://doi.org/10.1016/j.jip.2012.12.002.