Resveratrol Protects against Rankl-Induced Mineralized Bone Damage in a Transgenic Medaka Fish Model of Osteoporosis
Main Article Content
Abstract
Natural substances with bone protective potential always greatly attract researchers for the development of safer and more effective drugs for osteopenia and osteoporosis. Resveratrol (RES), a plant polyphenol found in red grapes and berries has been commonly suggested as supplement for bone health. It has shown bone anabolic and anti-resorptive effects in different in vitro cell cultures and in vivo rodent models. Recently, the medaka fish (Oryzias latipes) has emerged as a valuable model organism for bone research. In this study, we present, for the first time, evidence that resveratrol, tested at five doses (25, 50, 100, 150, and 200 μM), mitigated bone loss induced by Rankl in a transgenic medaka model for osteoporosis. Notably, the dose of 150 μM exhibited the highest bone-protective and anti-resorptive effect, reducing bone loss by approximately 20%. However, at the same dose, RES did not significantly affect the signal densities of green fluorescent protein (GFP) and alizarin complexone (ALC), which represent osteoblasts and mineralized matrix, respectively, in col10a1:nlGFP transgenic medaka larvae. In these larvae, osteoblasts were marked by GFP, and bone was stained with ALC. Our findings provide significant evidence from a non-rodent model regarding the therapeutic potential
of resveratrol.
References
[2] T. Matsumoto and I. Endo, RANKL as a Target for the Treatment of Osteoporosis, J. Bone Miner Metab. Vol. 39, No. 1, 2021, pp. 91-105, https://doi.org/10.1007/s00774-020-01153-7.
[3] A. Carrizzo, M. Forte, A. Damato et al., Antioxidant Effects of Resveratrol in Cardiovascular, Cerebral and Metabolic Diseases, Food Chem. Toxicol., Vol. 61, 2013, pp. 26-215, https://doi.org/10.1016/j.fct.2013.07.021.
[4] K. J. Pearson, J. A. Baur, K. N. Lewis et al., Resveratrol Delays Age-related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span, Cell Metab., Vol. 8, No. 2, 2008, pp. 68-157, https://doi.org/10.1016/j.cmet.2008.06.011.
[5] J. A. Baurad, D. A. Sinclair, Therapeutic Potential of Resveratrol: The in vivo Evidence, Nat. Rev. Drug Discov., Vol. 5, No. 6, 2006, pp. 493-506, https://doi.org/10.1038/nrd2060.
[6] A. Mobasheri, M. Shakibaei, Osteogenic Effects of Resveratrol in vitro: Potential for the Prevention and Treatment of Osteoporosis, Ann. N Y Acad. Sci., Vol. 1290, 2013, pp. 59-66, https://doi.org/10.1111/nyas.12145.
[7] J. C. Tou, Resveratrol Supplementation Affects Bone Acquisition and Osteoporosis: Pre-clinical Evidence toward Translational Diet Therapy, Biochim. Biophys. Acta, Vol. 1852, No. 6, 2015, pp. 94-1186, https://doi.org/10.1016/j.bbadis.2014.10.003.
[8] L. Wang, Q. Li, H. Yan et al., Resveratrol Protects Osteoblasts Against Dexamethasone-Induced Cytotoxicity Through Activation of AMP-Activated Protein Kinase, Drug Des. Devel. Ther., Vol. 14, 2020, pp. 4451-4463,
https://doi.org/10.2147/DDDT.S266502.
[9] W. Wang, L. M. Zhang, C. Guoand, J. F. Han, Resveratrol Promotes Osteoblastic Differentiation in a Rat Model of Postmenopausal Osteoporosis by Regulating Autophagy, Nutr. Metab. (Lond), Vol.17, 2020, pp. 29,
https://doi.org/10.1186/s12986-020-00449-9.
[10] X. He, G. Andersson, U. Lindgrenand, Y. Li, Resveratrol Prevents RANKL-induced Osteoclast Differentiation of Murine Osteoclast Progenitor RAW 264.7 Cells through Inhibition of ROS Production, Biochem. Biophys. Res.. Commun, Vol. 401, No. 3, 2010, pp. 62-356, https://doi.org/10.1016/j.bbrc.2010.09.053.
[11] R. H. Wong, J. J. Thaung Zaw, C. J. Xianand, P. R. Howe, Regular Supplementation With Resveratrol Improves Bone Mineral Density in Postmenopausal Women: A Randomized, Placebo-Controlled Trial, J. Bone Miner Res.,
Vol. 35, No. 11, 2020, pp. 2121-2131, https://doi.org/10.1002/jbmr.4115.
[12] D. D. Thompson, H. A. Simmons, C. M. Pirie, H. Z Ke, FDA Guidelines and Animal Models for Osteoporosis, Bone, Vol. 17, 1995, pp. S125-S133, https://doi.org/10.1016/8756-3282(95)00285-L.
[13] M. Tanaka, K. Naruse, H. Takeda, Medaka - A Model for Organogenesis, Human Disease, and Evolution, Springer Japan, 2011, https://dx.doi.org/10.1007/978-4-431-92691-7.
[14] M. Schartl, Beyond the Zebrafish: Diverse Fish Species for Modeling Human Disease, Dis. Model Mech., Vol. 7, No. 2, 2014, pp. 181-92, https://doi.org/10.1242/dmm.012245.
[15] C. Y. Lin, C. Y. Chiang, H. J. Tsai, Zebrafish and Medaka: New Model Organisms for Modern Biomedical Research, J. Biomed Sci, Vol. 23, No. 19, 2016, pp. 19, https://doi.org/ 10.1186/s12929-016-0236-5.
[16] V. Laizé, J. Paulo, M. Gavaia, C. Leonor, Fish: A Suitable System to Model Human Bone Disorders and Discover Drugs with Osteogenic or Osteotoxic Activities, Drug Discovery Today: Disease Models, Vol. 13, 2014, pp. 29-37,
https://doi.org/10.1016/j.ddmod.2014.08.001.
[17] J. Wittbrodt, A. Shimaand, M. Schartl, Medaka-a Model Organism from the Far East, Nat. Rev. Genet., Vol. 3, No. 1, 2002, pp. 53-64, https://doi.org/10.1038/nrg704.
[18] S. Kirchmaier, B. Höckendorf, E. K. Möller et al., Efficient Site-specific Transgenesis and Enhancer Activity Tests in Medaka Using PhiC31 Integrase, Development. Vol. 140, No. 20, 2013, pp. 4287-95, https://doi.org/10.1242/dev.096081.
[19] V. Thermesa, C. Grabher, F. Ristoratorea et al., I-SceI Meganuclease Mediates Highly Efficient Transgenesis in Fish, Mech. Dev., Vol. 118, 2002, pp. 91-98, https://doi.org/10.1016/s0925-4773(02)00218-6.
[20] C. Mosimann, A. C. Puller, K. L. Lawsonet et al., Site-directed Zebrafish Transgenesis into Single Landing Sites with the PhiC31 Integrase System, Dev. Dyn., Vol. 242, No. 8, 2013, pp. 949-963, https://doi.org/ 10.1002/dvdy.23989.
[21] M. Chatani, Y. Takano, A. Kudo, Osteoclasts in Bone Modeling, as Revealed by in vivo Imaging, Are Essential for Organogenesis in Fish, Dev. Biol., Vol. 360, No. 1, 2011, pp. 96-109, https://doi.org/10.1016/j.ydbio.2011.09.013.
[22] Q. T. Phan, W. H. Tan, R. Liu et al., Cxcl9l and Cxcr3.2 Regulate Recruitment of Osteoclast Progenitors to Bone Matrix in a Medaka Osteoporosis Model, Proc. Natl. Acad. Sci. U S A, Vol. 117, No. 32, 2020, pp. 19276-19286,
https://doi.org/10.1073/pnas.2006093117.
[23] T. T. To, P. E. Witten, J. Renn et al., Rankl-Induced Osteoclastogenesis Leads to Loss of Mineralization in a Medaka Osteoporosis Model, Development, Vol. 139, No. 1, 2012, pp. 50-141, https://doi.org/10.1242/dev.071035.
[24] K. Inohaya, Y. Takanoand, A. Kudo, The Teleost Intervertebral Region Acts as a Growth Center of the Centrum: In vivo Visualization of Osteoblasts and Their Progenitors in Transgenic Fish, Dev. Dyn. Vol. 236, No. 11, 2007, pp. 46-3031, https://doi.org/10.1002/dvdy.21329.
[25] A. Moriyama, K. Inohaya, K. Maruyama, A. Kudo, Bef Medaka Mutant Reveals the Essential Role of C-myb in Both Primitive and Definitive Hematopoiesis, Dev. Biol., Vol. 345, No. 2, 2010, pp. 43-133, https://doi.org/10.1016/j.ydbio.2010.06.031.
[26] V. C. Pham, T. H. Pham, D. L. Tran, T. T. To, Segregation of rankl:HSE:CFP Medaka Transgenic Fish Line for Use as Osteoporosis Models, VNU J. Sci. Nat. Sci. Technol., pp. 24-34 (in Vietnamese).
[27] C. V. Pham, T. T. Pham, T. T. Lai et al., Icariin Reduces Bone Loss in a Rankl-induced Transgenic Medaka (Oryzias latipes) Model for Osteoporosis, J. Fish Biol., Vol. 98, No. 4, 2021, pp. 1039 -1048, https://doi.org/10.1111/jfb.14241.
[28] D. H. Mai, T. T. To, T. T. Phuong, D. L. Tran, Oleanoic Acid Alleviates Bone Damage in a Medaka Osteoporosis Model, Vietnam J. Physiol., Vol. 25, No. 3, 2019, pp. 28-33, http://dx.doi.org/10.54928/vjop.v25i3.52.
[29] T. H. L. Nguyen, X. D. Le, M. K. Nguyen, T. T. Phuong, Chemical Constituents from the Root of Fallopia Multiflora Collected in Vietnam, J. Med. Herbs, Vol. 19, No. 2, 2014, pp. 86-90 (in Vietnamese).
[30] J. Renn, A. Büttner, T. T. To et al., A Col10a1:nlGFP Transgenic Line Displays Putative Osteoblast Precursors at the Medaka Notochordal Sheath prior to Mineralization, Dev. Biol., Vol. 381, No. 1, 2013, pp. 43-134,
https://doi.org/10.1016/j.ydbio.2013.05.030.
[31] K. J. Livak, T. D. Schmittgen, Analysis of Relative Gene Expression Data Using Real-time Quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods, Vol. 25, No. 4, 2001, pp. 8-402, https://doi.org/10.1006/meth.2001.1262.
[32] J. Zhao, G. Zhou, J. Yang et al., Effects of Resveratrol in an Animal Model of Osteoporosis: A Meta-analysis of Preclinical Evidence, Front Nutr., Vol. 27, No. 10, 2023, pp. 1234756, https://doi.org/10.3389/fnut.2023.1234756.
[33] P. Boissy, T. L. Andersen, B. M. Abdallah et al., Resveratrol Inhibits Myeloma Cell Growth, Prevents Osteoclast Formation, and Promotes Osteoblast Differentiation, Cancer Res., Vol. 65, No. 21, 2005, pp. 52-9943,
https://doi.org/10.1158/0008-5472.CAN-05-0651.
[34] J. Yasutake, K. Inohaya, A. Kudo, Twist Functions in Vertebral Column Formation in Medaka, Oryzias Latipes, Mech. Dev., Vol. 121, No. 7-8, 2004, pp. 94-883, https://doi.org/10.1016/j.mod.2004.03.008.
[35] J. Renn, C. Winkler, Osterix-mCherry Transgenic Medaka for in vivo Imaging of Bone Formation, Dev. Dyn., Vol. 238, No. 1, 2009, pp. 8-241, https://doi.org/10.1002/dvdy.21836.
[36] Y. T. Tsao, Y. J. Huang, H. H. Wu et al., Osteocalcin Mediates Biomineralization during Osteogenic Maturation in Human Mesenchymal Stromal Cells, Int. J. Mol. Sci., Vol. 18, No. 1, 2017, pp. 159,
https://doi.org/10.3390/ijms18010159.
[37] S. Yeniyol, J. L. Ricci, Alkaline Phosphatase Levels of Murine Pre-osteoblastic Cells on Anodized and Annealed Titanium Surfaces, Eur. Oral Res., Vol. 52, No. 1, 2018, pp. 12-19, https://doi.org/10.26650/eor.2018.78387.