Influencing Factors to Biodispersant Biosynthesis of Bacillus subtilis S343
Main Article Content
Abstract
Biodispersants are a group of compounds containing surface-active molecules (hydrophilic and hydrophobic radicals). They are widely researched and applied in many industries, biological control agents in agriculture and environmental remediation. Bacillus subtilis strain S343, isolated from ferns, is one of the most effective biodispersant producers. Nutritional factors and fermentation conditions affecting the yield of biodispersants were studied. The fermentation medium contains carbon source which is soluble starch (1% w/v), nitrogen source which is yeast extract (0.5% w/v), some minerals and Ethylenediaminetetraacetic Acid (EDTA) (0.05 g/L), pH 7, 0 and incubation under shaking conditions at 35 °C for 6 days was found to maximize biodispersant production. The crude biodispersants produced reached the highest level of 18.9 g/L, oil spreading activity reached 75 mm, and the ability to collapse in just 1 second after contact. In particular, the E24 emulsification index is high at 60% and the surface tension of the crude biodispersant can be reduced to 30.92 ± 2.0 compared to the water sample of 71.2 mN/m. The study shows that Bacillus subtilis S343 strain is a potential source for producing biodispersants for application in the fields of environment, biomedicine, agriculture and industry.
References
[2] E. M. D. Oliveira, V. H. G. Sales, M. S. Andrade, J. E. Zilli, W. L. Borges, T. M. D. Souza, Isolation and Characterization of Biosurfactant-Producing Bacteria from Amapaense Amazon soils, International Journal of Microbiology, 2021, pp. 11, https://doi.org/10.1155/2021/9959550.
[3] A. Sumiardi, E. S. Soetarto, D. Susilaningsih, Screening and Characterization of Biosurfactant Produced by Bacterial Consortium in Degrading Polycyclic Aromatic Hydrocarbon Compound, AIP Conference Proceedings, AIP Publishing, 2018, https://doi.org/10.1063/1.5050097.
[4] Z. G. Faisal, M. S. Mahdi, K. H. Alobaidi, Optimization and Chemical Characterization of Biosurfactant Produced from a Novel Pseudomonas guguanensis Strain Iraqi ZG.K.M, International Journal of Microbiology, 2023, pp. 16, https://doi.org/10.1155/2023/1571991.
[5] I. C. Mendoza, M. V. Vasquez, P. Aguayo, D. C. Montoya, L. Plaza, M. R. Peña, A. M. Marqués, J. C. León, Biosurfactant from Bacillus subtilis DS03: Properties and Application in Cleaning Out Place System in a Pilot Sausages Processing, Microorganisms, Vol. 10, No. 8, 2022, pp. 1518, https://doi.org/10.3390/microorganisms10081518.
[6] A. De Giani, J. Zampolli, P. Di Gennaro, Recent Trends on Biosurfactants with Antimicrobial Activity Produced by Bacteria Associated with Human Health: Different Perspectives on Their Properties, Challenges, and Potential Applications, Frontiers in Microbiology, Vol. 12, 2021, pp. 665150, https://doi.org/10.3389/fmicb.2021.655150.
[7] A. Nayarisseri, P. Singh, S. K. Singh, Screening, Isolation and Characterization of Biosurfactant Producing Bacillus tequilensis Strain ANSKLAB04 from Brackish River Water, International Journal of Environmental Science and Technology, Vol. 16, No. 11, 2019, pp. 7103-7112, https://doi.org/10.1007/s13762-018-2089-9.
[8] W. Sun, B. Zhu, F. Yang, M. Dai, S. Sehar, C. Peng, I. Ali, I. Naz, Optimization of Biosurfactant Production from Pseudomonas sp. CQ2 and Its Application for Remediation of Heavy Metal Contaminated Soil, Chemosphere, Vol. 265, 2020, pp.129090, https://doi.org/10.1016/j.chemosphere.2020.129090.
[9] A. M. Shete, G. Wadhawa, I. M. Banat, B. A. Chopade, Mapping of Patents on Bioemulsifier and Biosurfactant: A Review, Journal of Scientific and Industrial Research, Vol. 65, No. 2, 2006, pp. 91-115.
[10] A. R. Najafi, M. R. Rahimpour, A. H. Jahanmiri, R. Roostaazad, D. Arabian, Z. Ghobadi, Enhancing Biosurfactant Production from an Indigenous Strain of Bacillus mycoides by Optimizing The Growth Conditions Using a Response Surface Methodology, Chemical Engineering Journal, Vol. 163, No. 3, 2010, pp. 188-194,
https://doi.org/10.1016/j.cej.2010.06.044.
[11] L. T. Tra, D. T. Nhung, P. T. H. Thao, T. T. Huong, N. T. H. Lien, N. V. Hieu, N. K. B. Tam, Study on the Ability to Produce Biodispersant by Bacterial Strain S343 Isolated from Fern, Journal of Vietnam Agricultural Science and Technology, Vol. 01, No. 152, 2024, pp. 70-77 (in Vietnamese).
[12] S. O. Adebajo, P. O. Akintokun, A. E. Ojo, A. K. Akintokun, O. A. Badmos, Recovery of Biosurfactant Using Different Extraction Solvent by Rhizospheric Bacteria Isolated from Rice-Husk and Poultry Waste Biochar-Amended Soil, Egyptian Journal of Basic and Applied Sciences, Vol. 7, No. 1, 2020, pp. 252-266,
https://doi.org/10.1080/2314808X.2020.1797377.
[13] F. Nazari, N. Safaie, B. M. Soltani, M. S. Bakhsh, M. Sharifi, The Effect of Environmental Factors on Surfactin Production of Bacillus subtilis, Journal of Crop Protection, Vol. 6, No. 1, 2017, pp. 89-97.
[14] N. H. Youssef, K. E. Duncan, D. P. Nagle, K. N. Savage, R. M. Knapp, M. J. McInerney, Comparison of Methods to Detect Biosurfactant Production by Diverse Microorganisms, Journal of Microbiological Methods, Vol. 56, No. 3, 2004, pp. 339-347, https://doi.org/10.1016/j.mimet.2003.11.001.
[15] M. Putri, R. Hertadi, Effect of Glycerol as Carbon Source for Biosurfactant Production by Halophilic Bacteria Pseudomonas stutzeri BK-AB12. Procedia Chemistry, Vol. 16, 2015, pp. 321-327, https://doi.org/10.1016/j.proche.2015.12.059.
[16] S. Stepanović, D. Vuković, V. Hola, G. D. Bonaventura, S. Djukić, I. Ćirković, F. Ruzicka, Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci, Apmis, Vol. 115, No. 8, 2007, pp. 891-899, https://doi.org/10.1111/j.1600-0463.2007.apm_630.x.
[17] D. K. F. Santos, R. D. Rufino, J. M. Luna, V. A. Santos, L. A. Sarubbo, Biosurfactants: Multifunctional Biomolecules of the 21st Century, International Journal of Molecular Sciences, Vol. 17, No. 3, 2016, pp. 401,
https://doi.org/10.3390/ijms17030401.
[18] S. George, K. Jayachandran, Production and Characterization of Rhamnolipid Biosurfactant from Waste Frying Coconut Oil Using a Novel Pseudomonas aeruginosad D. Journal of Applied Microbiology, Vol. 114, No. 2, 2013, pp. 373-383, https://doi.org/10.1111/jam.12069.
[19] V. Singh, S. Haque, R. Niwas, A. Srivastava, M. Pasupuleti, C. K. M. Tripathi, Strategies for Fermentation Medium Optimization: an In-Depth Review, Frontiers in Microbiology, Vol. 7, 2017, pp. 1-16,
https://doi.org/10.3389/fmicb.2016.02087.
[20] P. S. Bisen, A. Sharma, Fermentation, in: Introduction to Instrumentation in Life Sciences. Crc Press, 2012, pp. 249-306.
[21] M. O. Ilori, C. J. Amobi, A. C. Odocha, Factors Affecting Biosurfactant Production by Oil Degrading Aeromonas spp. Isolated from a Tropical Environment, Chemosphere, Vol. 61, No. 7, 2005, pp. 985-992,
https://doi.org/10.1016/j.chemosphere.2005.03.066.
[22] M. Pepi, A. Cesàro, G. Liut, F. Baldi, An Antarctic Psychrotrophic Bacterium Halomonas sp. ANT-3b, Growing on n-Hexadecane, Produces a New Emulsyfying Glycolipid. FEMS Microbiology Ecology, Vol. 53, No. 1, 2005,
pp. 157-166, https://doi.org/10.1016/j.femsec.2004.09.013.
[23] W. C. John, I. O. Ogbonna, G. M. Gberikon, C. C. Iheukwumere, Evaluation of Biosurfactant Production Potential of Lysinibacillus fusiformis MK559526 Isolated from Automobile-Mechanic-Workshop Soil, Brazilian Journal of Microbiology, Vol. 52, No. 2, 2021, pp. 663-674. https://doi.org/10.1007/s42770-021-00432-3.
[24] E. J. Gudiña, J. A. Teixeira, L. R. Rodrigues, Biosurfactant-Producing Lactobacilli: Screening, Production Profiles, and Effect of Medium Composition, Applied and Environmental Soil Science, Vol. 2011, 2011, pp. 1-9,
https://doi.org/10.1155/2011/201254.
[25] V. K. de O. Schmidt, J. de S. Carvalho, D. de Oliveira, C. J. de Andrade, Biosurfactant Inducers for Enhanced Production of Surfactin and Rhamnolipids: An Overview, World Journal of Microbiology and Biotechnology, Vol. 37, No. 21, 2021, https://doi.org/10.1007/s11274-020-02970-8.
[26] J. A. Salam, N. D. Nilanjana Das, Induced Biosurfactant Production and Degradation of Lindane by Soil Basidiomycetes Yeast, Rhodotorula sp. VITJzN03, Research Journal of Pharmaceutical, Biological and Chemical Sciences, Vol. 4, No. 4, 2013, pp. 664-670.
[27] D. P. Meneses, E. J. Gudiña, F. Fernandes, L. R. B. Gonçalves, L. R. Rodrigues, S. Rodrigues, The Yeast-Like Fungus Aureobasidium thailandense LB01 Produces a New Biosurfactant Using Olive Oil Mill Wastewater as an Inducer, Microbiological Research, Vol. 204, 2017, pp. 40-47, https://doi.org/10.1016/j.micres.2017.07.004.
[28] Y. H. Wei, L. F. Wang, J. S. Changy, S. S. Kung, Identification of Induced Acidification in Iron-Enriched Cultures of Bacillus subtilis During Biosurfactant Fermentation, Journal of Bioscience and Bioengineering, Vol. 96, No. 2, 2003, pp. 174-178, https://doi.org/10.1016/S1389-1723(03)90121-6.
[29] A. Khopade, B. Ren, X. Y. Liu, K. Mahadik, L. Zhang, C. Kokare, Production and Characterization of Biosurfactant from Marine Streptomyces Species B3, Journal of Colloid and Interface Science, Vol. 367, No. 1, 2012, pp. 311-318, https://doi.org/10.1016/j.jcis.2011.11.009.
[30] D. Pardhi, R. Panchal, K. Rajput, Screening of Biosurfactant Producing Bacteria and Optimization of Production Conditions for Pseudomonas guguanensis D30. Bioscience Biotechnology Research Communications,
Vol. 13, No. 1, 2020, pp. 170-179.
[31] A. Fouda, M. S. E. Gamal, E. H. A. Shakour, A. A. Radwan, Optimization and Improvement of Biosurfactant Production for Pseudomonas aeruginosa 4.2 and Bacillus cereus 2.3 Strains Isolated from Oily Polluted Soil Sample, International Journal of Advanced Research in Biological Sciences, Vol. 3, No. 1, 2016, pp. 76-87.
[32] A. Khopade, R. Biao, X. Liu, K. Mahadik, L. Zhang, C. Kokare, Production and Stability Studies of the Biosurfactant Isolated from Marine Nocardiopsis sp. B4. Desalination, Vol. 285, 2012, pp. 198-204,
https://doi.org/10.1016/j.desal.2011.10.002.
[33] K. C. Ramya Devi, R. L. Sundaram, S. Vajiravelu, V. Vasudevan, G. K. Mary Elizabeth, Structure Elucidation and Proposed De Novo Synthesis of an Unusual Mono-Rhamnolipid by Pseudomonas guguanensis from Chennai Port Area, Scientific Reports, Vol. 9, No. 1, 2019, pp. 1-11, https://doi.org/10.1038/s41598-019-42045-9.