Le Phan Anh, Vu Thi Phuong, Pham Bao Yen, Le Thi Hong Nhung, Phan Tuan Nghia, Nguyen Thi Hong Loan

Main Article Content

Abstract

Botulinum neurotoxins (BoNTs) produced by Clostridium botulinum are metalloproteases. Based on structural differences and substrate specificity, BoNTs are classified into 8 serotypes from A to H. Identification of the endopeptidase activity of BoNTs is the basis for BoNT detection. In this study, a recombinant gene encoding for the substrate of the BoNT serotype (BoNT/B) was successfully cloned and expressed in E. coli BL21(DE3) using a pET28CYL1 vector. At the N-terminus of the designed recombinant protein, there was 6´His tag along with an enhanced cyan fluorescent protein. The C-terminus held an enhanced yellow fluorescent protein, while a peptide with amino acid sequences spanning from 60 to 94 residues of VAMP2 (a natural substrate of BoNT/B) was positioned in the midsection. The whole construct was called 6´His-CFP-VAMP2(60-94)-YFP, with a molecular weight of approximately 60.1 kDa. The substrate protein exhibited a high level of expression in the soluble fraction of E. coli BL21(DE3), which was purified via Ni-affinity chromatography to electrophoretic homogeneity. The extracellular fluid of C. botulinum serotype B (crude BoNT/B) cleaved the recombinant protein to generate two smaller protein fragments that are consistent with theoretical calculations. Crude BoNT/B required the presence of dithiothreitol (DTT) for substrate proteolytic cleavage, but it was inhibited by ethylene diamine tetraacetic acid (EDTA).

Keywords: BoNT, Clostridium botulinum, ECFP-EYFP, pET28CLY1, VAMP2.

References

[1] M. W. Peck, Bacteria: Clostridium botulinum, Encyclopedia of Food Safety, Vol. 1, 2014, pp. 381-394, https://doi.org/10.1016/B978-0-12-378612-8.00091-3.
[2] S. Zhang, G. Masuyer, J. Zhang, Y. Shen, D. Lundin, L. Henriksson, S. I. Miyashita, M. M. Carranza, M. Dong, P. Stenmark, Identification and Characterization of a Novel Botulinum Neurotoxin, Nat. Commun., Vol. 8, No. 14130, 2017 pp. 1-10, https://doi.org/ 10.1038/ncomms14130.
[3] L. Berg, D. Sterm, D. Pauly, S. Mahrhold, J. Wesemann et al., Functional Detection of Botulinum Neurotoxin Serotypes A to F by Monoclonal Neoepitope-Specific Antibodies and Suspension Array Technology, Sci. Rep., Vol. 9, No. 5531, 2019, https://doi.org/10.1038/s41598-019-41722-z.
[4] S. Simon, U. Fiebig, Y. Liu, R. Tierney, J. Dano, S. Worbs, T. Enderman, M. C. Nevers, H. Volland, D. Sesardic, M. B. Dorner, Recommended Immunological Strategies to Screen for Botulinum Neurotoxin-Contacting Samples, Toxins, Vol. 7, No. 12, 2015, pp. 5011-5034, https://doi.org/10.3390/toxins7124860.
[5] Z. G. Wang, Dong, S. Singh, H. Steen and J. Li, A Simple and Effective Method for Detecting Phosphopeptides for Phosphoproteomic Analysis, J. Proteomics, Vol. 72, No. 5, 2009, pp. 831-835, https://doi.org/10.1016/j.jprot.2009.03.006.
[6] O. Rosen, L. Feldberg, S. Gura, R. Zichel, A New Peptide Substrate for Enhanced Botulinum Neurotoxin Type B Detection by Endopeptidase-Liquid Chromatography-Tandem Mass Spectrometry/Multiple Reaction Monitoring Assays, Anal. Biochem., Vol. 473, 2015, pp. 7-10, htttps://10.1016/j.ab.2014.09.016.
[7] S. R. Kalb, J. Baudys, K. Kiernan, D. Wang, F. Becher, J. R. Barr, Proposed BoNT/A and /B Peptide Substrates Cannot Detect Multiple Subtypes in the Endopep-MS Assay, J. Anal Toxicol., Vol. 44, No. 2020, pp. 173-179, https://doi.org/10.1093/jat/bkz044.
[8] C. C. Shone, C. P. Quinn, R. Wait, B. Hallis, S. G. Fooks, P. Hambleton, Proteolytic Cleavage of Synthetic Fragments of Vesicle-Associated Membrane Protein, Isoform-2 by Botulinum Serotype B Neurotoxin, Eur. J. Biochem., Vol. 217, No. 3, 1993, pp. 965-971, https://doi.org/10.1111/j.14321033.1993.tb18327.x.
[9] R. J. Hobbs, C. A. Thomas, J. Halliwell and C. D. Gwenin, Rapid Detection of Botulinum Neurotoxins - A Review, Toxins, Vol. 11, No. 418, 2019, https://doi.org/10.3390/toxins11070418.
[10] T. T. H. La, T. L. Nguyen, T. T. Nguyen, Y. Pham, Investigation of Botulinum Neurotoxin Types from Clostridium botulinum Causing a Recent Outbreak in Vietnam, VNU J. Sci.: Nat. Sci. Technol., Vol. 37, No. 4, 2021, pp. 64-68, https://doi.org/10.25073/2588-1140/vnunst.5332.
[11] H. L. T. Nguyen, H. L. Nguyen, P. A. Le, T. T. Nguyen, M. Q. Luu, Y. Pham, A Versatile Immunoassay Based on Functionalized Nanoparticles for Botulinum Neurotoxin Detection and Sensor Development, Discover Appl. Sci., Vol. 6 No. 243, 2024, https://doi.org/10.1007/s42452-024-05900-7.
[12] M. Dong, W. H. Tepp, E. A. Johnson, E. R. Chapman, Using Fluorescent Sensors to Detect Botulinum Neurotoxin Activity in Vitro and in Living Cells, Proc. Natl. Acad. Sci. USA, Vol. 101, No. 41, 2004), pp. 14701-14706, https://doi.org/10.1073/pnas.0404107101.
[13] D. R. Ruge, F. M. Dunning, T. M. Piazza T, B. E. Molles, M. Adler, F. N. Zeytin, W. C. Tucker, Detection of Six Serotypes of Botulinum Neurotoxin using Fluorogenic Reporters, Anal. Biochem., Vol. 411, No. 2, 2011, pp. 200-209, https://doi.org/10.1016/j.ab.2011.01.002.
[14] H. Yu, L. Crisman, M. H. B. Stowell, J. Shen, Functional Reconstitution of Intracellular Vesicle Fusion using Purified SNAREs and Sec1/Munc18 (SM) Proteins, Methods Mol. Biol., Vol. 1860, 2019, pp. 237-249, https://doi.org/10.1007/978-1-4939-8760-3_15.,
[15] U. K. Laemmli, Cleavage of Structural Proteins During the Assembly of the Head of Bacteriophage T4, Nature, Vol. 227, No. 5259, 1970, pp. 680-685, https://doi.org/10.1038/227680a0.
[16] S. Cai, H. K. Sarkar, B. R. Singh, Enhancement of the Endopeptidase Activity of Botulinum Neurotoxin by its Associated Proteins and Dithiothreitol, Biochemistry, Vol. 38, No. 21, 1999, pp. 6903-6910, https://doi.org/10.1021/bi990086c.
[17] L. L. Simpson, A. B. Maksymowych, S. Hao, The Role of Zinc Binding in the Biological Activity of Botulinum Toxin, J. Biol. Chem., Vol. 276, No. 29, 2001, pp. 27034-27041, https://doi.org/10.1074/jbc.M102172200.
[18] R. Rasooly, P. M. Do, Development of an in Vitro Activity Assay as an Alternative to the Mouse Bioassay for Clostridium botulinum Neurotoxin Type A, Appl. Environ. Microbiol., Vol. 74, No. 14, 2008, pp. 4309-4313, https://doi.org/10.1128/AEM.00617-08.