Optical Properties of S-doped and S, N Co-doped Graphene Quantum Dots and Application
Main Article Content
Abstract
In recent years, carbon-based quantum dots, including carbon quantum dots (CQDs) and graphene quantum dots (GQDs), have been widely researched as new alternatives to conventional antibacterial agents. The structural characteristics and properties of the materials can also be tuned and controlled by changing the shape and size of the GQDs. Effective doping with heteroatoms can also tune the optical, electronic and electrochemical properties, etc., of GQDs. In this report, we study and synthesize sulfur (S)-doped graphene quantum dots and sulfur (S), nitrogen (N)-co-doped-graphene quantum dots using a simple method that requires minimal energy and is environmentally friendly. By controlling the absorption and luminescence spectra in the desired wavelength range, S, N-GQDs can easily be applied as biocides for common bacteria such as E. coli and S. aureus, also presented in this report.
References
[2] W. Wu, Y. Qin, Y. Fang, Y. Zhang, S. Shao, F. Meng, M. Zhang, Based on Multi-omics Technology Study the Antibacterial Mechanisms of pH-dependent N-GQDs Beyond ROS, J. Hazard Mater, Vol. 441, 2023, pp. 129954.
[3] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications, Adv Mater, Vol. 31, No. 21, 2019, pp. e1808283.
[4] G. Perini, V. Palmieri, G. Ciasca, M. De Spirito, M. Papi, Unravelling the Potential of Graphene Quantum Dots in Biomedicine and Neuroscience, Int J. Mol Sci, Vol. 21, No. 10, 2020, pp. 3712-3736.
[5] K. Jin, H. Gao, L. Lai, Y. Pang, S. Zheng, Y. Niu, X. Li, Preparation of Highly Fluorescent Sulfur Doped Graphene Quantum Dots for Live Cell Imaging, Journal of Luminescence, Vol. 197, 2018, pp. 147-152.
[6] B. C. Lee, J. Y. Lee, J. Kim, J. M. Yoo, I. Kang, J. J. Kim, N. Shin, D. J. Kim, S. W. Choi, D. Kim, B. H. Hong, K. S. Kang, Graphene Quantum Dots as Anti-inflammatory Therapy for Colitis, Sci. Adv., Vol. 6, 2020, pp. 2630.
[7] S. Chen, Y. Quan, Y. L. Yu, J. H. Wang, Graphene Quantum Dot/Silver Nanoparticle Hybrids with Oxidase Activities for Antibacterial Application, ACS Biomaterials Science & Engineering, Vol. 3, No. 3, 2017, pp. 313-321.
[8] S. Kadian, G. Manik, N. Das, P. Nehra, R. P. Chauhan, P. Roy, Synthesis, Characterization and Investigation of Synergistic Antibacterial Activity and Cell Viability of Silver-sulfur Doped Graphene Quantum Dot (Ag@S-GQDs) Nanocomposites, J. Mater Chem B, Vol. 8, No. 15, 2020, pp. 3028-3037.
[9] V. D. Dao, P. Kim, S. Baek, L. L. Larina, K. Yong, R. Ryoo, S. H. Ko, H. S. Choi, Facile Synthesis of Carbon Dot-Au Nanoraspberries and Their Application as High-performance Counter Electrodes in Quantum Dot-sensitized Solar Cells, Carbon, Vol. 96, 2016, pp. 139-144.
[10] Y. Zhu, C. Dai, C. Hao, H. Guo, L. Yan, Purification of Nitrogen-doped Graphene Quantum Dots and its Application in Polymer Solar Cells, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 648, 2022.
[11] T. Majumder, S. Dhar, P. Chakraborty, K. Debnath, S. P. Mondal, S, N Co-Doped Graphene Quantum Dots Decorated C-Doped ZnO Nanotaper Photoanodes for Solar Cells Applications, Nano, Vol. 14, No. 01, 2019.
[12] R. M. Rezaei, M. Jaymand, Graphene Quantum Dots Coated on Quartz Sand as Efficient and Low‐cost Adsorbent for Removal of Hg2+ and Pb2+ from Aqueous Solutions, Environmental Progress & Sustainable Energy, Vol. 38, No. S1, 2018.
[13] N. A. Tran, N. T. Hien, N. M. Hoang, H. L. T. Dang, D. Q. Huy, T. V. Quy, N. T. Hanh, N. H. Vu, V. D. Dao, Carbon Dots in Environmental Treatment and Protection Applications, Desalination, Vol. 548, No., 2023.
[14] D. I. Son, B. W. Kwon, D. H. Park, W. S. Seo, Y. Yi, B. Angadi, C. L. Lee, W. K. Choi, Emissive ZnO-graphene Quantum Dots for White-light-emitting Diodes, Nat Nanotechnol, Vol. 7, No. 7, 2012, pp. 465-71.
[15] F. Khan, J. H. Kim, Emission-wavelength-Dependent Photoluminescence Decay Lifetime of N-functionalized Graphene Quantum Dot Downconverters: Impact on Conversion Efficiency of Cu(In, Ga)Se2 Solar Cells, Sci Rep, Vol. 9, No. 1, 2019, pp. 10803.
[16] S. Kang, Y. K. Jeong, K. H. Jung, Y. Son, W. R. Kim, J. H. Ryu, K. M. Kim, One-step Synthesis of Sulfur incorporated Graphene Quantum Dots using Pulsed Laser Ablation for Enhancing Optical Properties, Opt Express, Vol. 28, No. 15, 2020, pp. 21659-21667.
[17] L. X. Hung, N. H. Yen, T. T. Hue, D. N. Thuan, P. N. Thang, V. T. H. Hanh, V. C. Nhung, J. Laverdant, N. T. M. Huong, P. T. Nga, Fabrication and Optical Properties of Sulfur- and Nitrogen-doped Graphene Quantum Dots by the Microwave–hydrothermal Approach, Journal of Nanoparticle Research, Vol. 24, No. 10, 2022, pp. 206.
[18] H. Liu, N. Yang, D. Teng, R. Mao, Y. Hao, X. Ma, X. Wang, J. Wang, Fatty Acid Modified-antimicrobial Peptide Analogues with Potent Antimicrobial Activity and Topical Therapeutic Efficacy Against Staphylococcus Hyicus, Appl Microbiol Biotechnol, Vol. 105, No. 14-15, 2021, pp. 5845-5859.
[19] W. Zhu, X. Feng, M. Zhao, Z. Wei, Z. Liu, G. Wang, Q. Guo, D. Chen, Scalable and Atom Economic Preparation of Red-near-infrared Emitted N-doped Graphene Quantum Dots with a High Quantum Yield, Diamond and Related Materials, Vol. 116, 2021, pp. 108395.
[20] K. Vrettos, P. Angelopoulou, J. Papavasiliou, G. Avgouropoulos, V. Georgakilas, Sulfur-doped Graphene Aerogels Reinforced with Carbon Fibers as Electrode Materials, Journal of Materials Science, Vol. 55, No. 23, 2020, pp. 9676-9685.
[21] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An Electrochemical Avenue to Green-luminescent Graphene Quantum Dots as Potential Electron-acceptors for Photovoltaics, Adv Mater, Vol. 23, No. 6, 2011, pp. 776-80.
[22] T. V. T. Nhung, H. V. Tuyen, N. Tran, L. X. Hung, S, N Co-doped Graphene Quantum Dots Fabricated by Rapid Microwave-assisted Pyrolysis and Their Optical Properties, Materials Today Communications, Vol. 37, 2023, pp. 107282.
[23] S. Kadian, G. Manik, A Highly Sensitive and Selective Detection of Picric Acid using Fluorescent Sulfur-doped Graphene Quantum Dots, Luminescence, Vol. 35, No. 5, 2020, pp. 763-772.
[24] P. R. Kharangarh, S. Umapathy, G. Singh, Thermal Effect of Sulfur Doping for Luminescent Graphene Quantum Dots, ECS Journal of Solid State Science and Technology, Vol. 7, No. 3, 2018, pp. M29-M34.
[25] P. R. Kharangarh, S. Umapathy, G. Singh, Investigation of Sulfur Related Defects in Graphene Quantum Dots for Tuning Photoluminescence and High Quantum Yield, Applied Surface Science, Vol. 449, 2018, pp. 363-370.
[26] S. Kadian, G. Manik, K. Ashish, M. Singh, R. P. Chauhan, Effect of Sulfur Doping on Fluorescence and Quantum Yield of Graphene Quantum Dots: An Experimental and Theoretical Investigation, Nanotechnology, Vol. 30, No. 43, 2019, pp. 435704.
[27] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid, Carbon, Vol. 50, No. 12, 2012,
pp. 4738-4743.
[28] X. Li, S.P. Lau, L. Tang, R. Ji, P. Yang, Sulphur Doping: A Facile Approach to Tune the Electronic Structure and Optical Properties of Graphene Quantum Dots, Nanoscale, Vol. 6, No. 10, 2014, pp. 5323-5328.
[29] M. D. R. Andrade, T. A. Nguyen, W. P. Mistler, J. Armas, J. E. Lu, G. Roseman, W. R. Hollingsworth, F. Nichols, G. L. Millhauser, A. Ayzner, C. Saltikov, S. Chen, Antimicrobial Activity of Graphene Oxide Quantum Dots: Impacts of Chemical Reduction, Nanoscale Adv, Vol. 2, No. 3, 2020, pp. 1074-1083.
[30] A. Ananthanarayanan, Y. Wang, P. Routh, M. A. Sk, A. Than, M. Lin, J. Zhang, J. Chen, H. Sun, P. Chen, Nitrogen and Phosphorus Co-doped Graphene Quantum Dots: Synthesis from Adenosine Triphosphate, Optical Properties, and Cellular Imaging, Nanoscale, Vol. 7, No. 17, 2015, pp. 8159-65.
[31] N. A. Travlou, D. A. Giannakoudakis, M. Algarra, A. M. Labella, E. R. Castellón, T. J. Bandosz, S- and N-doped Carbon Quantum Dots: Surface Chemistry Dependent Antibacterial Activity, Carbon, Vol. 135, 2018, pp. 104-111.