Synthesis and Characterization of g-C3N4 Modified CoMoO4 Heterojunction with Enhanced Photocatalytic Performance for Levofloxacin Degradation under Visible Light Irradiation
Main Article Content
Abstract
In the current era, environmental pollution, particularly in water bodies, amid the backdrop of dwindling freshwater resources, stands as a pressing concern necessitating attention from both authorities and scientists. To address the issue of pollutant removal from water sources, various methodologies have been proposed, among which advanced oxidation techniques utilizing photocatalysts have garnered widespread interest due to their promising potential. CoMoO4/g-C3N4 photocatalysts can be readily synthesized via the hydrothermal method and subsequent calcination of urea under carefully controlled hydrothermal conditions, ensuring optimal synthesis outcomes. Characterization analyses employing XRD, SEM, EDX, and FT-IR techniques confirm the successful synthesis of CoMoO4/g-C3N4, featuring bandgap energies conducive to photocatalytic activity under visible light irradiation (2.45 – 2.56 eV). In this research, CoMoO4/g-C3N4 catalysts were deployed for Levofloxacin photodegradation under visible light. Thus, the findings highlight the high efficiency of 7% CoMoO4/g-C3N4 photocatalysts in degrading Levofloxacin under optimal conditions, offering a promising approach for the remediation of pharmaceutical pollutants in water.
References
[2] E. Y. Klein, T. P. Van Boeckel, E. M. Martinez, S. Pant, S. Gandra, S. A. Levin, H. Goossens, R. Laxminarayan, Global increase and geographic convergence in antibiotic consumption between 2000 and 2015, Proc. Natl. Acad. Sci. U.S.A., Vol. 115, 2018, pp. E3463-E3470.
[3] B. Li, T. Zhang, Different Removal Behaviours of Multiple Trace Antibiotics in Municipal Wastewater Chlorination, Water Res, Vol. 47, 2013, pp. 2970-2982.
[4] I. A. Balcıoglu, M. Otker, Treatment of Pharmaceutical Wastewater Containing Antibiotics by O3 and O3/H2O2 Processes, Chemosphere, Vol. 50, No. 1, 2003, pp. 85-95.
[5] A. Y. Liu, M. L. Cohen, Prediction of New Low Compressibility Solids, Science, Vol. 245, 1989, pp. 841-842.
[6] J. Yang, X. Wu, X. Li, et al., Synthesis and Characterization of Nitrogen-rich Carbon Nitride Nanobelts by Pyrolysis of Melamine, Appl. Phys. A, Vol. 105, 2011, pp. 161-166.
[7] Y. Li, J. Zhang, Q. Wang, Y. Jin, D. Huang, Q. Cui, G. Zou, Nitrogen-Rich Carbon Nitride Hollow Vessels: Synthesis, Characterization, and Their Properties, J. Phys. Chem. B, Vol. 114, 2010, pp. 9429-9434.
[8] S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine, Langmuir, Vol. 25, 2009, pp. 10397-10401.
[9] E. G. Gillan, Synthesis of Nitrogen-Rich Carbon Nitride Networks from an Energetic Molecular Azide Precursor, Chem. Mater., Vol. 12, 2000, pp. 3906-3912.
[10] J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz, J. L. Brito, Electronic Properties and Phase Transformations in CoMoO4 and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies, J. Phys. Chem. B, Vol. 102, No. 8, 1998, pp. 1347-1355.
[11] H. Lakhlifi, Y. E. Jabbar, M. Benchikhi, L. E. Rakho, B. Durand, R. E. Ouatib, Nanocrystalline Transition Metal (CoMoO4) Prepared by Sol Gel Method: Correlation between Powder Colors and α/β Phase Transformations, Inorg. Chem. Commun., Vol. 145, 2022, pp. 110049.
[12] L. Luo, D. Li, Y. Dang, W. Wang, G. Yu, J. Li, B. Ma, Capacitance Catalysis: Positive and Negative Effects of Capacitance of Mo2C in Photocatalytic H2 Evolution, ACS Sustain. Chem. Eng., Vol. 10, No. 18, 2022, pp. 5949-5957.
[13] F. H. Hsu, S. Y. Hsu, C. W. Pao, J. L. Chen, C. L. Chen, J. M. Chen, K. T. Lu, Electrochemical Properties and Mechanism of CoMoO4@NiWO4 Core-shell Nanoplates for High-performance Supercapacitor Electrode and Studied with in-situ X-ray Absorption Spectroscopy, Nanoscale, 2020.
[14] D. R. Paul, R. Sharma, S. P. Nehra, A. Sharma, Effect of Calcination Temperature, pH and Catalyst Loading on Photodegradation Efficiency of Urea Derived Graphitic Carbon Nitride Towards Methylene Blue Dye Solution, RSC Adv., Vol. 9, No. 27, 2019, pp. 15381-15391.
[15] Z. Zhu, H. Xia, H. Li, Construction of CoMoO4/g-C3N4 Binary Heterojunction Photocatalyst with Improving Photocatalytic Performance for Ciprofloxacin under Visible Light, Diamond Relat. Mater., 2023.
[16] B. S. M. A. Balushi, F. A. Marzouqi, B. A. Wahaibi, A. T. Kuvarega, S. M. Z. A. Kindy, Y. Kim, R. Selvaraj, Hydrothermal Synthesis of CdS Sub-microspheres for Photocatalytic Degradation of Pharmaceuticals, Appl. Surf. Sci., Vol. 457, 2018, pp. 559-565.
[17] G. Gupta, A. Kaur, A. S. K. Sinha, S. K. Kansal, Photocatalytic Degradation of Levofloxacin in Aqueous Phase using Ag/AgBr/BiOBr Microplates under Visible Light, Mater. Res. Bull., Vol. 88, 2017, pp. 148-155.
[18] S. L. Prabavathi, K. Saravanakumar, C. M. Park, V. Muthuraj, Photocatalytic Degradation of Levofloxacin by a Novel Sm6WO12/g-C3N4 Heterojunction: Performance, Mechanism and Degradation Pathways, Sep. Purif. Technol., 2020, pp. 117985.
[19] Q. Chen, Y. Xin, X. Zhu, Au-Pd Nanoparticles-Decorated TiO2 Nanobelts for Photocatalytic Degradation of Antibiotic Levofloxacin in Aqueous Solution, Electrochim. Acta, Vol. 186, 2015, pp. 34-42.