Application of Duplex Polymerase Chain Reaction and Whole Genome Sequencing in Analyzing Carbapenem Resistance Genes in Clinical Klebsiella pneumoniae Isolates
Main Article Content
Abstract
Klebsiella pneumoniae (K. pneumoniae) is a Gram-negative, encapsulated bacterium with the potential for high virulence and antibiotic resistance. Its ability to develop multidrug resistance poses a global threat, particularly in clinical settings. The study aimed to compare the application of two different molecular-based methods, duplex polymerase chain reaction (PCR) and whole genome sequencing (WGS), to investigate the prevalence of carbapenem resistance genes, including blaKPC, blaNDM, blaVIM, and blaOXA-48 in 41 K. pneumoniae isolates from intensive care units. As a result, both methods showed the absence of blaVIM in all isolates. Interestingly, K. pneumoniae carbapenemase (KPC) was revealed to be the least common carbapenemase type despite the previously reported prevalence of KPC-producing Enterobacterales. There was no difference between the two methods in yielding the high prevalence of blaOXA-carrying K. pneumoniae strains, which is consistent with global trends. In detail, while PCR detected the presence of the oxacillinase (OXA) 48 gene well, WGS did not. In contrast, WGS revealed the presence of OXA-48-like variant, OXA-181. Notably, regarding the co-occurrence of carbapenemase types, the PCR method identified two isolates carrying all three types, while WGS analysis did not report this. In conclusion, PCR and WGS have advantages and limitations in detecting antibiotic resistance genes. PCR is efficient and straightforward but unable to detect all gene variations. On the other hand, WGS is more resource-intensive but can provide comprehensive variant information, which is important regarding the diversity of antibiotic-resistance genes.
References
[2] K. L. Wyres, and K. E. Holt, Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones, Trends Microbiol, Vol. 24, No. 12, 2016, pp. 944-956.
[3] M. Bassetti, E. Righi, A. Carnelutti, E. Graziano, and A. Russo, Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control, Expert Rev Anti Infect Ther, Vol. 16, No. 10, 2018, pp. 749-761.
[4] F. M. MacKenzie, K. J. Forbes, T. Dorai-John, S. G. Amyes, and I. M. Gould, Emergence of a carbapenem-resistant Klebsiella pneumoniae, Lancet, Vol. 350, No. 9080, 1997, pp. 783.
[5] P. L. Lu, Y. C. Liu, H. S. Toh, Y. L. Lee, Y. M. Liu, C. M. Ho, C. C. Huang, C. E. Liu, W. C. Ko, J. H. Wang, H. J. Tang, K. W. Yu, Y. S. Chen, Y. C. Chuang, Y. Xu, Y. Ni, Y. H. Chen, and P. R. Hsueh, Epidemiology and antimicrobial susceptibility profiles of Gram-negative bacteria causing urinary tract infections in the Asia-Pacific region: 2009-2010 results from the Study for Monitoring Antimicrobial Resistance Trends (SMART), Int J Antimicrob Agents, Vol. 40 Suppl, 2012, pp. S37-43.
[6] L. T. H. My H Pham, Mathew A Beale, Fahad A Khokhar, Nguyen Thi Hoa, Patrick Musicha, Grace A Blackwell, Hoang Bao Long,, N. G. B. Dang Thi Huong, Dao Xuan Co, Tran Giang, Cuong Bui, Hai Ninh Tran, James Bryan, Archie Herrick, Theresa Feltwell,, and J. P. Behzad Nadjm, Hindrik Rogier van Doorn, Nguyen Vu Trung, Nguyen Van Kinh, Mili Estée Török, Nicholas R Thomson, Evidence of widespread endemic populations of highly multidrug resistant Klebsiella pneumoniae in hospital settings in Hanoi, Vietnam: a prospective cohort study, The Lancet, Vol. 4, No. 4, 2023, pp. E255-E263.
[7] E. S. Donkor, Sequencing of bacterial genomes: principles and insights into pathogenesis and development of antibiotics, Genes (Basel), Vol. 4, No. 4, 2013, pp. 556-72.
[8] L. Poirel, T. R. Walsh, V. Cuvillier, and P. Nordmann, Multiplex PCR for detection of acquired carbapenemase genes, Diagn Microbiol Infect Dis, Vol. 70, No. 1, 2011, pp. 119-23.
[9] T. D. Linh, N. H. Thu, K. Shibayama, M. Suzuki, L. Yoshida, P. D. Thai, D. D. Anh, T. N. Duong, H. S. Trinh, V. P. Thom, L. T. V. Nga, N. T. K. Phuong, B. T. Thuyet, T. R. Walsh, L. V. Thanh, A. L. Banuls, H. R. van Doorn, T. Van Anh, and T. H. Hoang, Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam, J Glob Antimicrob Resist, Vol. 27, 2021, pp. 200-211.
[10] A. Mairi, A. Pantel, F. Ousalem, A. Sotto, A. Touati, and J. P. Lavigne, OXA-48-producing Enterobacterales in different ecological niches in Algeria: clonal expansion, plasmid characteristics and virulence traits, J Antimicrob Chemother, Vol. 74, No. 7, 2019, pp. 1848-1855.
[11] A. Touati, and A. Mairi, Epidemiology of carbapenemase-producing Enterobacterales in the Middle East: a systematic review, Expert Rev Anti Infect Ther, Vol. 18, No. 3, 2020, pp. 241-250.
[12] J. D. D. Pitout, G. Peirano, M. M. Kock, K. A. Strydom, and Y. Matsumura, The Global Ascendency of OXA-48-Type Carbapenemases, Clin Microbiol Rev., Vol. 33, No. 1, 2019.
[13] T. Tada, M. Tsuchiya, K. Shimada, T. T. T. Nga, L. T. A. Thu, T. T. Phu, N. Ohmagari, and T. Kirikae, Dissemination of Carbapenem-resistant Klebsiella pneumoniae clinical isolates with various combinations of Carbapenemases (KPC-2, NDM-1, NDM-4, and OXA-48) and 16S rRNA Methylases (RmtB and RmtC) in Vietnam, BMC Infect Dis, Vol. 17, No. 1, 2017, pp. 467.
[14] L. Poirel, R. A. Bonnin, and P. Nordmann, Genetic features of the widespread plasmid coding for the carbapenemase OXA-48, Antimicrob Agents Chemother, Vol. 56, No. 1, 2012, pp. 559-62.
[15] A. Potron, L. Poirel, and P. Nordmann, Derepressed transfer properties leading to the efficient spread of the plasmid encoding carbapenemase OXA-48, Antimicrob Agents Chemother, Vol. 58, No. 1, 2014, pp. 467-71.
[16] L. Poirel, A. Potron, and P. Nordmann, OXA-48-like carbapenemases: the phantom menace, J Antimicrob Chemother, Vol. 67, No. 7, 2012, pp. 1597-606.
[17] S. Oueslati, P. Nordmann, and L. Poirel, Heterogeneous hydrolytic features for OXA-48-like β-lactamases, J Antimicrob Chemother, Vol. 70, No. 4, 2015, pp. 1059-63.
[18] C. Flores, K. Bianco, I. de Filippis, M. M. Clementino, and C. Romao, Genetic Relatedness of NDM-Producing Klebsiella pneumoniae Co-Occurring VIM, KPC, and OXA-48 Enzymes from Surveillance Cultures from an Intensive Care Unit, Microb Drug Resist, Vol. 26, No. 10, 2020, pp. 1219-1226.
[19] B. Berglund, N. T. B. Hoang, M. Tarnberg, N. K. Le, M. Nilsson, D. T. K. Khu, O. Svartstrom, J. Welander, L. E. Nilsson, L. Olson, T. M. Dien, H. T. Le, M. Larsson, and H. Hanberger, Molecular and phenotypic characterization of clinical isolates belonging to a KPC-2-producing strain of ST15 Klebsiella pneumoniae from a Vietnamese pediatric hospital, Antimicrob Resist Infect Control, Vol. 8, 2019, pp. 156.
[20] H. Guo, Y. Wu, L. Li, J. Wang, J. Xu, and F. He, Global emergence of carbapenem-resistant Klebsiella pneumoniae co-carrying multiple carbapenemases, Comput Struct Biotechnol J, Vol. 21, 2023, pp. 3557-3563.
[21] J. S. Kim, J. K. Yu, S. J. Jeon, S. H. Park, S. Han, S. H. Park, M. Kang, J. I. Jang, J. Park, E. K. Shin, J. Kim, C. K. Hong, J. H. Lee, Y. O. Hwang, and Y. H. Oh, Dissemination of an international high-risk clone of Escherichia coli ST410 co-producing NDM-5 and OXA-181 carbapenemases in Seoul, Republic of Korea, Int J Antimicrob Agents, Vol. 58, No. 6, 2021, pp. 106448.
[22] J. S. Kim, C. K. Hong, S. H. Park, Y. H. Jin, S. Han, H. S. Kim, J. H. Park, B. N. Bae, J. Y. Chung, T. H. Han, J. H. Lee, S. M. Lee, and Y. H. Oh, Emergence of NDM-4 and OXA-181 carbapenemase-producing Klebsiella pneumoniae, J Glob Antimicrob Resist, Vol. 20, 2020, pp. 332-333.
[23] F. Zhang, Z. Li, X. Liu, G. Luo, Y. Wu, C. Li, J. Zhao, Y. Zhang, Y. Hu, and B. Lu, Molecular Characteristics of an NDM-4 and OXA-181 Co-Producing K51-ST16 Carbapenem-Resistant Klebsiella pneumoniae: Study of Its Potential Dissemination Mediated by Conjugative Plasmids and Insertion Sequences, Antimicrobial Agents and Chemotherapy, Vol. 67, No. 1, 2023, pp. e01354-22.