Synthesis, Characterization and Photocatalytic Activity of CoMoO4/g-C3N4/rGO under Visible Light
Main Article Content
Abstract
In the present paper, the CoMoO4/g-C3N4/rGO photocatalytic composite material was synthesized using the combined calcination and hydrothermal method. The composite material was characterized using X-ray diffraction, Scanning electron microscopy, Energy-dispersive X-ray spectroscopy, and UV−Vis diffuse reflectance spectroscopy. The results showed that the CoMoO4/g-C3N4 composite material had an absorption spectrum shifted to the visible light region compared to each component CoMoO4 and g-C3N4. The catalytic activity of the material was studied through the treatment efficiency of Levofloxacin antibiotic under visible light conditions. The degradation efficiency of Levofloxacin reached 78.58% after 120 minutes of illumination under pH=7, Levofloxacin concentration of 10 ppm and using 0,05 g of material.
References
[2] W. D. Oh, V. W. C. Chang, Z. T. Hu, R. Goei, T. T. Lim, Enhancing the Catalytic Activity of g-C3N4 through Me Doping (Me = Cu, Co and Fe) for Selective Sulfathiazole Degradation via Redox-based Advanced Oxidation Process,” Chem. Eng. J., Vol. 323, 2017, pp. 260-269, https://doi.org/ 10.1016/j.cej.2017.04.107.
[3] M. Solehudin, U. Sirimahachai, G. A. M. Ali, K. F. Chong, S. Wongnawa, One-pot Synthesis of Isotype Heterojunction g-C3N4-MU Photocatalyst for Effective Tetracycline Hydrochloride Antibiotic and Reactive Orange 16 Dye Removal, Advanced Powder Technology., Vol. 31, 2020, pp. 1891-1902, https://doi.org/10.1016/j.apt.2020.02.020.
[4] V. Umapathy, P. Neeraja, Sol-gel Synthesis and Characterizations of CoMoO4 Nanoparticles: An Efficient Photocatalytic Degradation of 4-Chlorophenol, J. Nanosci. Nanotechnol., Vol. 16, No. 3, 2016, pp. 2960-2966, https://doi.org/10.1166/jnn.2016.10761.
[5] C. Zhang, Y. Li, D. Shuai, Y. Shen, W. Xiong, L. Wang, Graphitic Carbon Nitride (g-C3N4)-based Photocatalysts for Water Disinfection and Microbial Control: A Review, Chemosphere., Vol. 214, 2019, pp. 462-479, https://doi.org/10.1016/j.chemosphere.2018.09.137.
[6] R. Koutavarapu, S. G. Peera, T. G. Lee, Recent Trends in Graphitic Carbon Nitride-Based Binary and Ternary Heterostructured Electrodes for Photoelectrochemical Water Splitting, Processes., Vol. 9, No. 11, 2021, pp. 1959,
https://doi.org/10.3390/pr9111959.
[7] B. Yuan, J. Wei, T. Hu, H. Yao, Z. Jiang, Z. Fang, Z. Chu, Simple Synthesis of g-C3N4/rGO Hybrid Catalyst for the Photocatalytic Degradation of Rhodamine B, Chinese Journal of Catalysis., Vol. 36, No. 7, 2015, pp. 1009-1016,
https://doi.org/10.1016/S1872-2067(15)60844-0.
[8] Y. Hou, Z. Wen, S. Cui, X. Gou, J. Chen, Constructing 2D Porous Graphitic C3N4 Nanosheet/Nitrogen-Doped Graphene/Layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity, Advanced Materials., Vol. 25, No. 43, pp. 6291-6297, https://doi.org/10.1002/adma.201303116.
[9] D. R. Paul, R. Sharma, S. P. Nehra, A. Sharma, Effect of Calcination Temperature, pH and Catalyst Loading on Photodegradation Efficiency of Urea Derived Graphitic Carbon Nitride Towards Methylene Blue Dye Solution, RSC Advances., Vol. 9, No. 27, 2019, pp. 15381-15391, https://doi.org/10.1039/c9ra02201.
[10] J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, A. Albornoz, J. L. Brito, Electronic Properties and Phase Transformations in CoMoO4and NiMoO4: XANES and Time-Resolved Synchrotron XRD Studies, The Journal of Physical Chemistry B., Vol. 102, No. 8, 1998, pp. 1347-1355, https://doi.org/10.1021/jp972137q.
[11] H. Lakhlifi, Y. E. Jabbar, M. Benchikhi, L. E. Rakho, B. Durand, R. E. Ouatib, Nanocrystalline Transition Metal (CoMoO4) Prepared by Sol Gel Method: Correlation Between Powder Colors and α/β Phase Transformations, Inorganic Chemistry Communications., Vol. 145, 2022, pp. 1387-7003, https://doi.org/10.1016/j.inoche.2022.110049.
[12] Y. Zhang, H. Tang, X. Ji, C. Li, L. Chen, D. Zhang, X. Yang, H. Zhang., Synthesis of Reduced Graphene Oxide/Cu Nanoparticle Composites and Their Tribological Properties, RSC Adv., Vol. 3, 2013, pp. 26086-26093, https://doi.org/10.1039/C3RA42478B.
[13] H. Huang, Y. He, X. Du, P.K. Chu, Y. Zhang, A General and Facile Approach to Heterostructured Core/Shell BiVO4/BiOI p–n Junction: Room-Temperature in Situ Assembly and Highly Boosted Visible-Light Photocatalysis, ACS Sustainable Chem Eng, Vol. 3, No. 12, 2015, pp. 3262-3273, https://doi.org/10.1016/j.chemosphere.2018.09.137.
[14] K. S. Varma, A. D. Shukla, R. J. Tayade, P. A. Joshi, A. K. Das, K. B. Modi, V. G. Gandhi, Photocatalytic Performance and Interaction Mechanism of Reverse Micelle Synthesized Cu TiO2 Nanomaterials Towards Levofoxacin Under Visible LED Light, Photochemical & Photobiological Sciences., Vol. 3, No. 1, 2022,
pp. 77-89, https://doi.org/10.1007/s43630-021-00141-8.
[15] Y. Xing , F. Tian, D. Wu, X. Yong, Facile Synthesis of Z-scheme ZnMoO4/Bi2O4 Heterojunction Photocatalyst for Effective Removal of Levofloxacin Inorganic Chemistry Communications., Vol. 143, 2022, pp. 109763, https://doi.org/10.1016/j.inoche.2022.109763.
[16] N. G. Nair, V. G. Gandhi, K. Modi, A. Shukla, Photocatalytic Degradation of Levofloxacin by GO-TiO2 Under Visible Light, Materials Today: Proceedings., 2024, https://doi.org/10.1016/j.matpr.2023.12.049.