Nguyen Van Hanh, Nguyen Thi Hong, Vu Thi Thanh Thao, Le Hong Hanh, Do Thanh Van, Ho Nguyen Quynh Chi, Le Thanh Long

Main Article Content

Abstract

Adipose-derived stem cells (ADSCs) have great potential in regenerative medicine and tissue engineering. Especially, bovine ADSCs play an important role in the quality of artificial meat. In this study, we investigated the characterization of Zebu hybrid cattle’s ADSCs isolated by enzymatic treatment and explant culture methods from the fat pad of cattle hoof. Characterization of ADSCs was evaluated by the self-renewal and specific marker expression. The self-renewal capacity was examined by population doubling time (PDT) and growth kinetics of ADSCs. Specific markers concluded Cluster of Differentiation 73 (CD73), CD90, CD44, CD45, CD29 were analysised by polymerase chain reaction (PCR). The PDT of ADSCs from the enzymatic treatment method was significantly higher than from the explant culture method. Besides, when comparing the level of proliferation and stability of adipose stem cells, we found a difference in culture efficiency between the two methods. In addition, the expression of markers specific to adipose stem cells shows that cells from adipose tissue using two isolation methods are quite stable in morphology and the markers are maintained in expression over time. These results can have several efficient advantages in in vitro production of meat alternatives.

Keywords: Adipose derived stem cells, bovine, isolation methods, characterization.

References

[1] M. F. Pittenger, D. E. Discher, B. M. Péault, D. G. Phinney, A. I. Caplan, Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress, NPJ Regen. Med. Vol. 4, 2019, pp. 1-15, https://doi.org/10.1038/s41536-019-0083-6.
[2] J. Zhang, Y. Liu, Y. Chen, L.Yuan, H. Liu, J. Wang, Q. Liu, Y. Zhang, Adipose-Derived Stem Cells: Current Applications and Future Directions in the Regeneration of Multiple Tissues, Stem Cells Int, 2020, pp. 8810813, https://doi.org/10.1155/2020/8810813.
[3] Y. Shi, G. Hu, J. Su et al., Mesenchymal Stem Cells: A New Strategy for Immunosuppression and Tissue Repair, Cell Res., Vol. 20, 2010, pp. 510-518, https://doi.org/10.1038/cr.2010.44.
[4] P. A. Zuk, M. Zhu, P. Ashjian, D. A. De Ugarte, J. I. Huang, H. Mizuno, Z. C. Alfonso, J. K. Fraser, P. Benhaim, M. H. Hedrick, Human Adipose Tissue is a Source of Multipotent Stem Cells, Mol. Biol. Cell, Vol. 13, 2002, pp. 4279-4295, https://doi.org/10.1091/mbc.e02-02-0105.
[5] S. Kern, H. Eichler, J. Stoeve, H. Klüter, K. Bieback, Comparative Analysis of Mesenchymal Stem Cells from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue, Stem Cells, Vol. 24, 2006, pp. 1294-1301, https://doi.org/10.1634/stemcells.2005-0342.
[6] Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, Z. Cui, Adipose-Derived Stem Cell: A Better Stem Cell than BMSC, Cell Biochem. Funct., Vol. 26, 2008, pp. 664-75, https://doi.org/10.1002/cbf.1488.
[7] X. Gu, C. Li, F. Yin, G. Yang, Adipose-Derived Stem Cells in Articular Cartilage Regeneration: Current Concepts and Optimization Strategies, Histol. Histopathol., Vol. 33, 2018, pp. 639-653, https://doi.org/10.14670/HH-11-955.
[8] F. B. Albrecht, T. Ahlfeld, A. Klatt, S. Heine, M. Gelinsky, P. J. Kluger, Biofabrication's Contribution to the Evolution of Cultured Meat, Adv, Healthcare Mater, Vol. 13, 2024, pp. 2304058, https://doi.org/10.1002/adhm.202304058.
[9] P. Kumar, N. Sharma, S. Sharma, N. Mehta, A. K. Verma, S. Chemmalar, A. Q. Sazili, In-vitro Meat: A Promising Solution for Sustainability of Meat Sector, J. Anim. Sci. Technol, Vol. 63, 2021, pp. 693-724,
https://doi.org/10.5187/jast.2021.e85.
[10] F. S. Nobre, Cultured Meat and the Sustainable Development Goals, Trends Food Sci. Technol., Vol. 124, 2022, pp. 140-153, https://doi.org/10.1016/j.tifs.2022.04.011.
[11] M. Matsuishi, Science and Technology of Meat and Meat Products in Japan-Pursuit of Their Palatability Under the Influence of Washoku, Traditional Japanese Cuisine, Meat Sci., Vol. 192, 2022, pp. 108919,
https://doi.org/10.1016/j.meatsci.2022.108919.
[12] T. Gotoh, T. Nishimura, K. Kuchida, H. Mannen, The Japanese Wagyu Beef Industry: Current Situation and Future Prospects - A Review, Asian-Australas, J. Anim. Sci, Vol. 31, 2018, pp. 933-950, https://doi.org/10.5713/ajas.18.0333.
[13] F. Louis, M. Furuhashi, H. Yoshinuma, S. Takeuchi, M. Matsusaki, Mimicking Wagyu Beef Fat in Cultured Meat: Progress in Edible Bovine Adipose Tissue Production with Controllable Fatty Acid Composition, Mater Today Bio, Vol. 30, 2023, pp. 100720, https://doi.org/10.1016/j.mtbio.2023.100720.
[14] P. Palumbo, F. Lombardi, G. Siragusa, M. G. Cifone, B. Cinque, M. Giuliani, Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stem Cells (ASCs): An Overview, Int. J. Mol. Sci, Vol. 19, 2018, pp. 1897, https://doi.org/10.3390/ijms19071897.
[15] M. L. B. K. Dominici, K. Le Blanc, I. Mueller et al., Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells, The International Society for Cellular Therapy Position Statement, Cytotherapy, Vol. 8, 2006, pp. 315-317, https://doi.org/10.1080/14653240600855905.
[16] R. V. Sampaio, M. R. Chiaratti, D. C. N. Santos, F. F. Bressan, J. R. Sangalli, A. L. A. Sa, T. V. Silva, N. N. Costa, M. S. Cordeiro, S. S. Santos, C. E. Ambrosio, Generation of Bovine
(Bos indicus) and Buffalo (Bubalus bubalis) Adipose Tissue Derived Stem Cells: Isolation, Characterization, and Multipotentiality, Genet. Mol. Res., Vol. 14, 2015, pp. 53-62, https://doi.org/10.4238/2015.January.15.7.
[17] Y. Ren, H. Wu, Y. Ma, M. Cang, R. Wang, D. Liu, Isolation, Cultivation and Identification of Adipose-Derived Stem Cell in Bovines, J. Biotechnol., Vol. 26, No. 12, 2010, pp. 1645-1651 (in Chinese).
[18] S. Redaelli, A. Bentivegna, D. Foudah, M. Miloso, J. Redondo, G. Riva, S. Baronchelli, L. Dalprà, G. Tredici, From Cytogenomic to Epigenomic Profiles: Monitoring the Biologic Behavior of In vitro Cultured Human Bone Marrow Mesenchymal Stem Cells, Stem Cell Res., Ther, Vol. 3, 2012, pp. 47-47, https://doi.org/10.1186/scrt138.
[19] C. Daniel, Characterization of Bovine Adipose-Derived Stem Cells, Int. J. Sci. Technol. Res., Vol. 6, No. 5, 2017, pp. 16-18, https://doi.org/10.6084/m9.figshare.12602111.
[20] Y. Zhao, S. D. Waldman, L. E. Flynn, The Effect of Serial Passaging on the Proliferation and Differentiation of Bovine Adipose-Derived Stem Cells, Cells Tissues Organs, Vol. 195, No. 5, 2012, pp. 414-427, https://doi.org/10.1159/000329254.
[21] R. Zhu, Y. Feng, R. Li, K. Wei, Y. Ma, Q. Liu, D. Shi, J. Huang, Isolation Methods, Proliferation, and Adipogenic Differentiation of Adipose-Derived Stem Cells from Different Fat Depots in Bovines, Mol. Cell Biochem., Vol. 479, No. 3, 2024. pp. 643-652, https://doi.org/10.1007/s11010-023-04753-9.
[22] M. F. Raoufi, P. Tajik, M. M. Dehghan, F. Eini, A. Barin, Isolation and Differentiation of Mesenchymal Stem Cells from Bovine Umbilical Cord Blood, Reprod. Domest. Anim, Vol. 46, 2011, pp. 95-99, https://doi.org/10.1111/j.1439-0531.2010.01594.x.
[23] S. H. Lee, S. H. Cha, C. L. Kim, H. S. Lillehoj, J. Y. Song, K. W. Lee, Enhanced Adipogenic Differentiation of Bovine Bone Marrow-Derived Mesenchymal Stem Cells, J. Appl. Animal Res., Vol. 43, No. 1, 2014, pp. 15-21,
https://doi.org/10.1080/09712119.2014.883320.
[24] C. N. de Moraes, L. Maia, M. C. Dias, C. P. Dell'Aqua, L. S. da Mota, A. Chapwanya, F. D. L. Alvarenga, E. Oba, Bovine Endometrial Cells: A Source of Mesenchymal Stem/Progenitor Cells, Cell Biol Int., Vol. 40, 2016, pp. 1332-1339, https://doi.org/10.1002/cbin.10688.
[25] C. G. Silva, C. F. Martins, E. R. Cunha, H. C. Bessler, T. Cardoso, G. H. L. Martins, S. N. Bao, Isolation, Characterization and Differentiation of Bovine Derived Mesenchymal Stem Cells from Amniotic Fluid, Wharton’s Jelly and Adipose Tissue, Anim. Reprod., Vol. 11, 2014, pp. 476.