Do Van Dang, Nguyen Linh Chi, Dang Thanh Tuan, Tran Quang Hung

Main Article Content

Abstract

In this study, we developed a simple and efficient synthetic procedure to obtain novel imidazothiazole-indole fused hybrid compounds through sequential C-N coupling reactions using copper catalysts. The key reaction was performed between 5-bromo-6-(2-bromophenyl)imidazo[2,1-b]thiazole derivatives and various amines, allowing for a significant expansion of the structural scope of the products compared to the use of nitrile derivatives. Optimal reaction conditions were identified, employing the CuI/ethyl 2-oxocyclohexane-1-carboxylate catalyst system, providing high overall yields (76-85%). Using this method, we successfully synthesized four new compounds (7c-f). The structures of all compounds were confirmed by 1H-NMR and 13C-NMR spectroscopy. This work presents a valuable contribution to the field of heterocyclic chemistry, offering a practical and versatile approach for the synthesis of diverse imidazothiazole-indole hybrids with potential applications in medicinal chemistry and materials science.

Keywords: Imidazothiazole-indole fused hybrids, sequential C-N coupling, copper catalysis, structural diversity, heterocyclic chemistry.

References

[1] M. M. Heravi, V. Zadsirjan, Prescribed Drugs Containing Nitrogen Heterocycles: An Overview, RSC advances, Vol. 10, 2020, pp. 44247-44311, https://doi.org/10.1039/D0RA09198G.
[2] D. K. Lang, R. Kaur, R. Arora, B. Saini, S. Arora, Nitrogen-Containing Heterocycles As Anticancer Agents: An Overview, Anticancer Agents Med. Chem., Vol. 20, 2020, pp. 2150-2168, https://doi.org/10.2174/1871520620666200705214917.
[3] A. Mermer, T. Keles, Y. Sirin, Recent Studies of Nitrogen Containing Heterocyclic Compounds as Novel Antiviral Agents: A Review, Bioorg. Chem., Vol. 114, 2021, pp. 105076, https://doi.org/10.1016/j.bioorg.2021.105076.
[4] R. M. Sbenati, M. H. Semreen, A. M. Semreen, M. K. Shehata, F. M. Alsaghir, M. I. El-Gamal, Evaluation of Imidazo[2,1–B]Thiazole-Based Anticancer Agents in One Decade (2011-2020): Current Status and Future Prospects, Biorg. Med. Chem., Vol. 29, 2021, pp. 115897, https://doi.org/10.1016/j.bmc.2020.115897.
[5] B. Suliphuldevara Mathada, N. Gunavanthrao Yernale, J. N. Basha, The Multi-Pharmacological Targeted Role of Indole and is Derivatives: A Review, Chemistryselect, Vol. 8, 2023, pp. e202204181, https://doi.org/10.1002/slct.202204181.
[6] R. Saini, N. Dharavath, S. R. Malladi, Design, Synthesis, and Antimicrobial Activity of Novel Isoxazolyl Imidazo[2,1‐B]Thiazole Libraries, J. Heterocycl. Chem., Vol. 59, 2022, pp. 1888-1906, https://doi.org/10.1002/jhet.4524.
[7] G. C. Moraski, N. Deboosere, K. L. Marshall, H. A. Weaver, A. Vandeputte, C. Hastings, L. Woolhiser, A. J. Lenaerts, P. Brodin, M. J. Miller, Intracellular and in Vivo Evaluation of Imidazo[2,1-B]Thiazole-5-Carboxamide Anti-Tuberculosis Compounds, PLoS One, Vol. 15, 2020, pp. e0227224, https://doi.org/10.1371/journal.pone.0227224.
[8] M. S. Hussein, N. Al-Lami, Anti-Cancer and Antioxidant Activities of Some New Synthesized Mannich Bases Containing an Imidazo (2, 1-b) Thiazole Moiety, Iraqi J. Sci., Vol. 63, 2022, pp. 4620-4636, https://doi.org/10.24996/ijs.2022.63.11.1.
[9] M. F. Baig, V. L. Nayak, P. Budaganaboyina, K. Mullagiri, S. Sunkari, J. Gour, A. Kamal, Synthesis and Biological Evaluation of Imidazo[2,1-B]Thiazole-Benzimidazole Conjugates As Microtubule-Targeting Agents, Bioorg. Chem., Vol. 77, 2018, pp. 515-526, https://doi.org/10.1016/j.bioorg.2018.02.005.
[10] B. Karaman, N. Ulusoy Güzeldemirci, Synthesis and Biological Evaluation of New Imidazo[2,1-B]Thiazole Derivatives as Anticancer Agents, Med. Chem. Res., Vol. 25, 2016, pp. 2471-2484, https://doi.org/10.1007/s00044-016-1684-x.
[11] X. Deng, X. Tan, T. An, Q. Ma, Z. Jin, C. Wang, Q. Meng, C. Hu, Synthesis, Characterization, and Biological Activity of a Novel Series of Benzo[4,5]Imidazo[2,1-B]Thiazole Derivatives As Potential Epidermal Growth Factor Receptor Inhibitors, Molecules, Vol. 24, 2019, pp. 682, https://doi.org/10.3390/molecules24040682.
[12] S. K. Bhattacharya, K. Andrews, R. Beveridge, K. O. Cameron, C. Chen, M. Dunn, D. Fernando, H. Gao, D. Hepworth, V. M. Jackson, V. Khot, J. Kong, R. E. Kosa, K. Lapham, P. M. Loria, A. T. Londregan, K. F. McClure, S. T. Orr, J. Patel, C. Rose, J. Saenz, I. A. Stock, G. Storer, M. VanVolkenburg, D. Vrieze, G. Wang, J. Xiao, Y. Zhang, Discovery of PF-5190457, A Potent, Selective, and Orally Bioavailable Ghrelin Receptor Inverse Agonist Clinical Candidate, ACS Med. Chem. Lett., Vol. 5, 2014, pp. 474-479, https://doi.org/10.1021/ml400473x.
[13] A. M. Curry, D. S. White, D. Donu, Y. Cen, Human Sirtuin Regulators: The "Success" Stories, Front. Physiol., Vol. 12, 2021, pp. 752117, https://doi.org/10.3389/fphys.2021.752117.
[14] E. Hoffmann, J. Wald, S. Lavu, J. Roberts, C. Beaumont, J. Haddad, P. Elliott, C. Westphal, E. Jacobson, Pharmacokinetics and Tolerability of SRT2104, A First-In-Class Small Molecule Activator of SIRT1, After Single and Repeated Oral Administration in Man, Br. J. Clin. Pharmacol., Vol. 75, 2013, pp. 186-196, https://doi.org/10.1111/j.1365-2125.2012.04340.x.
[15] L. Fletcher, S. K. Joshi, E. Traer, Profile of Quizartinib for the Treatment of Adult Patients With Relapsed/Refractory FLT3-ITD-Positive Acute Myeloid Leukemia: Evidence to Date, Cancer Manag. Res., Vol. 12, 2020, pp. 151-163, https://doi.org/10.2147/CMAR.S196568.
[16] K. Kidoguch, M. Shibusawa, T. Tanimoto, A Critical Appraisal of Japan's New Drug Approval Process: A Case Study of FLT3-ITD Inhibitor Quizartinib, Invest. New Drugs, Vol. 39, 2021, pp. 1457-1459, https://doi.org/10.1007/s10637-021-01151-0.
[17] E. Gursoy, E. D. Dincel, L. Naesens, N. U. Guzeldemirci, Design and Synthesis of Novel Imidazo[2,1-B]Thiazole Derivatives as Potent Antiviral and Antimycobacterial Agents, Bioorg. Chem., Vol. 95, 2020, pp. 103496,
https://doi.org/10.1016/j.bioorg.2019.103496.
[18] G. C. Moraski, N. Seeger, P. A. Miller, A. G. Oliver, H. I. Boshoff, S. Cho, S. Mulugeta, J. R. Anderson, S. G. Franzblau, M. J. Miller, Arrival of Imidazo[2,1-B]Thiazole-5-Carboxamides: Potent Anti-Tuberculosis Agents That Target Qcrb, ACS Infect. Dis., Vol. 2, 2016, pp. 393-398, https://doi.org/10.1021/acsinfecdis.5b00154.
[19] S. Kumar Ritika, A Brief Review of The Biological Potential of Indole Derivatives, Future J. Pharm. Sci., Vol. 6, 2020, pp. 1-19, https://doi.org/10.1186/s43094-020-00141-y.
[20] S. Thomas, L. L. Kleintop, G. C. Prendergast, Reliable Detection of Indoleamine 2,3 Dioxygenase-1 in Murine Cells and Tissues, Methods Enzymol, Vol. 29, 2019, pp. 219-233, https://doi.org/10.1016/bs.mie.2019.08.008.
[21] M. Stiborova, J. Poljakova, E. Martinkova, L. B. Dohalska, T. Eckschlager, R. Kizek, E. Frei, Ellipticine Cytotoxicity to Cancer Cell Lines - A Comparative Study, Interdiscip. Toxicol., Vol. 4, 2011, pp. 98-105, https://doi.org/10.2478/v10102-011-0017-7.
[22] P. Dhyani, C. Quispe, E. Sharma, A. Bahukhandi, P. Sati, D. C. Attri, A. Szopa, J. S. Rad, A. O. Docea, I. Mardare, D. Calina, W. C. Cho, Anticancer Potential of Alkaloids: A Key Emphasis to Colchicine, Vinblastine, Vincristine, Vindesine, Vinorelbine and Vincamine, Cancer Cell Int., Vol. 22, 2022, pp. 206, https://doi.org/10.1186/s12935-022-02624-9.
[23] H. M. Sampath Kumar, L. Herrmann, S. B. Tsogoeva, Structural Hybridization as a Facile Approach to New Drug Candidates, Bioorg. Med. Chem. Lett., Vol. 30, 2020, pp. 127514, https://doi.org/10.1016/j.bmcl.2020.127514.
[24] O. M. Soltan M. E. Shoman, S. A. A. Aziz, A. Narumi, H. Konno, M. A. Aziz, Molecular Hybrids: A Five-Year Survey on Structures of Multiple Targeted Hybrids of Protein Kinase Inhibitors for Cancer Therapy, Eur. J. Med. Chem., Vol. 225, 2021, pp. 113768, https://doi.org/10.1016/j.ejmech.2021.113768.
[25] S. Sharma, R. Das, M. Jadhav, A. Shard, Thiazole as an Indispensable Scaffold in Anti-Leukemic Agents: A Semicentennial Review, Chemistryselect, Vol. 9, 2024, pp. e202400879, https://doi.org/10.1002/slct.202400879.
[26] A. Singh, D. Malhotra, K. Singh, R. Chadha, P. M. S. Bedi, Thiazole Derivatives in Medicinal Chemistry: Recent Advancements in Synthetic Strategies, Structure Activity Relationship and Pharmacological Outcomes, J. Mol. Struct., Vol. 1266, 2022, pp. 133479, https://doi.org/10.1016/j.molstruc.2022.133479.
[27] P. Bhaumick, R. Kumar, S. S. Acharya, T. Parvin, L. H. Choudhury, Multicomponent Synthesis of Fluorescent Thiazole–Indole Hybrids and Thiazole-Based Novel Polymers, J. Org. Chem., Vol. 87, 2022, pp. 11399-11413,
https://doi.org/10.1021/acs.joc.2c00922.
[28] P. K. Adhikary, S. K. Das, B. A. Hess, Jr., Synthesis, Antihypertensive Activity of Some Imidazoindole Derivatives, J. Med. Chem., Vol. 19, 1976, pp. 1352-1354, https://doi.org/10.1021/jm00233a022.
[29] C. H. Kim, Y. M. Baek, H. Ch. Park, Ch. J. Lee, J. Y. Shin, J. H. Lee, H. S. Jo, Preparation of Condensed Imidazoindole Compounds as Organic Electroluminescent Device, Patent, KR20150034029A, 2015.
[30] S. Khan, V. Bajpai, H. M. Gauniyal, B. Kumar, P. M. Chauhan, Skeletal Diverse Synthesis of N-Fused Polycyclic Heterocycles Via the Sequence of Ugi-Type MCR and Cui-Catalyzed Coupling/Tandem Pictet-Spengler Reaction,
J. Org. Chem., Vol. 77, 2012, pp. 1414-1421, https://doi.org/10.1021/jo202255v.
[31] Y. Saito, H. Ishitani, M. Ueno, S. Kobayashi, Selective Hydrogenation of Nitriles to Primary Amines Catalyzed By A Polysilane/SiO2-Supported Palladium Catalyst Under Continuous-Flow Conditions, ChemistryOpen, Vol. 6, 2017, pp. 211-215, https://doi.org/10.1002/open.201600166.
[32] N. Disney, M. Smyth, S. Wharry, T. S. Moody, M. Baumann, A Cyanide-Free Synthesis of Nitriles Exploiting Flow Chemistry, React. Chem. Eng., Vol. 9, 2024, pp. 349-354, https://doi.org/10.1039/d3re00458a.
[33] H. N. Do, N. M. Quan, B. V. Phuc, D. V. Tinh, N. Q. Tien, T. T. T. Nga, V. T. Nguyen, T. Q. Hung, T. T. Dang, P. Langer, Efficient Copper-Catalysed Synthesis of Carbazoles By Double N-Arylation of Primary Amines With 2,2′-Dibromobiphenyl in the Presence of Air, Synlett, Vol. 32, 2021, pp. 611-615, https://doi.org/10.1055/s-0040-1706641.
[34] B. V. Phuc, H. N. Do, N. M. Quan, N. N. Tuan, N. Q. An, N. V. Tuyen, H. L. T. Anh, T. Q. Hung, T. T. Dang, P. Langer, Copper-Catalyzed Synthesis of Β- And Δ-Carbolines By Double N-Arylation of Primary Amines, Synlett, Vol. 32, 2021, pp. 1004-1008, https://doi.org/10.1055/s-0040-1720461.
[35] B. V. Phuc, Q. H. Dinh, N. L. Chi, Q. T. Nguyen, T. T. Nga Truong, N. Van Tuyen, H. Nguyen,
P. Langer, T. T. Dang, T. Q. Hung, Practical Synthesis of 5H-Pyrido[2′,1:2,3]Imidazo[4,5-B]Indoles By Cu-Catalyzed Double C–N Coupling Reactions, Tetrahedron, Vol. 136, 2023, pp. 133360, https://doi.org/10.1016/j.tet.2023.133360.
[36] T. Q. Hung, B. C. Q. Nguyen, B. V. Phuc, T. D. D. Van, C. M. Trang, Q. T. K. Anh, D. V. Do, H. Nguyen, Q. A. Ngo, T. T. Dang, Facile Access To 5H-Thiazolo[2',3':2,3]Imidazo[4,5-B]Indole Derivatives by Two-Fold Cu-Catalysed C-N Coupling Reactions, Org. Biomol. Chem., Vol.21, 2023, pp. 8813-8818, https://doi.org/10.1039/d3ob01515g.