Duong Thi Nhung, Nguyen Huy Manh, Trinh Thi Dieu Binh, Nguyen Dinh Hiep, Pham Phuoc Dien, Pham Thi Bich, Pham Thi Bich, Tran Duc Long, Thach Ut Dong, To Thanh Thuy

Main Article Content

Abstract

Garcinia oblongifolia Champ. ex Benth is a plant species widely distributed in Vietnam. It contains xanthones - bioactive compounds known for their potent antioxidant, anti-inflammatory, and anticancer properties. Xanthones have also emerged as potential bone-protective agents. Here, cowanol, a common xanthone, was isolated from the branches of G. oblongifolia in Binh Dinh Province, with 98.4% purity. The in vivo toxicity and bone-protective activity of cowanol were assessed using medaka (Oryzias latipes), a standardized fish model in toxicity and disease research. Acute toxicity was evaluated over a 96-hour exposure period, assessing wild-type embryos (24-120 hours post-fertilization) to concentrations ranging from 2 to 50 µM and larvae (7-11 days post-fertilization) to the doses of  2 to 30 µM. Results showed that cowanol was non-toxic to embryos but exhibited dose- and time-dependent toxicity to larvae, with the lethal concentration 50 (LC50) of 11.4 µM. At the doses of 2 µM or lower, cowanol was safe for medaka larvae. The bone-protective effect of cowanol was investigated using rankl:HSE:CFP transgenic larvae model for osteoporosis. Our findings revealed that cowanol significantly reduced bone damage in the Rankl-induced osteoporosis fish at three tested doses of 0.5, 1.5, or 2 µM with bone protection indexes reaching up to 29.38%. This study highlights the potential exploration of xanthones from Vietnamese plants for therapeutic applications.

Keywords: Acute toxicity, cowanol, medaka, osteoporosis, rankl:HSE:CFP.

References

[1] R. Reyeschilpa, M. Jimenezestrada, E. Estradamuniz, Antifungal Xanthones from Calophyllum Brasiliensis Heartwood, J. Chem. Ecol., Vol. 23, 1997, pp. 1901-1911, https://doi.org/10.1023/B:JOEC.0000006459.88330.61.
[2] P. H. Ho, An Illustrated Flora of Vietnam, Tre Publishing House, Ho Chi Minh City, 1999 (in Vietnamese).
[3] L. T. Do, Medicinal Plants and Herbs of Vietnam, Medical Publisher, 2004 (in Vietnamese).
[4] B. T. Trinh, T. T. Quach, D. N. Bui, D. Staerk, L. D. Nguyen, A. K. Jäger, Xanthones from the Twigs of Garcinia Oblongifolia and Their Antidiabetic Activity, Fitoterapia, Vol. 118, 2017, pp. 126-131, https://doi.org/10.1016/j.fitote.2017.03.003.
[5] S. Feng, Y. Jiang, J. Li, S. Qiu, T. Chen, A New Bixanthone Derivative from the Bark of Garcinia Oblongifolia, Nat Prod Res, Vol. 28, No. 2, 2014, pp. 81-85, https://doi.org/10.1080/14786419.2013.841686.
[6] H. Zhang, D. Zheng, Z. J. Ding, Y. Z. Lao, H. S. Tan, H. X. Xu, Corrigendum: UPLC-PDA-QTOFMS-guided Isolation of Prenylated Xanthones and Benzoylphloroglucinols from the Leaves of Garcinia Oblongifolia and Their Migration-Inhibitory Activity, Sci Rep, Vol. 6, 2016, pp. 39369, https://doi.org/10.1038/srep39369.
[7] S. X. Huang, C. Feng, Y. Zhou, G. Xu, Q. B. Han, C. F. Qiao, D. C. Chang, K. Q. Luo, H. X. Xu, Bioassay-guided Isolation of Xanthones and Polycyclic Prenylated Acylphloroglucinols from Garcinia Oblongifolia, J. Nat Prod, Vol. 72, No. 1, 2024, pp. 130-135, https://doi.org/10.1021/np800496c.
[8] M. K. Pandey, V. P. Kale, C. Song, S. S. Sung, A. K. Sharma, G. Talamo, S. Dovat, S. G. Amin, Gambogic Acid Inhibits Multiple Myeloma Mediated Osteoclastogenesis Through Suppression of Chemokine Receptor CXCR4 Signaling Pathways, Exp Hematol, Vol. 42, No. 10, 2014, pp. 883-896, https://doi.org/10.1016/j.exphem.2014.07.261.
[9] U. Kresnoadi, M. D. Ariani, E. Djulaeha, N. Hendrijantini, The Potential of Mangosteen (Garcinia Mangostana) Peel Extract, Combined with Demineralized Freeze-Dried Bovine Bone Xenograft, to Reduce Ridge Resorption and Alveolar Bone Regeneration in Preserving the Tooth Extraction Socket, J Indian Prosthodont Soc, Vol. 17, No. 3, 2017, pp. 282-288, https://doi.org/10.4103/jips.jips_64_17.
[10] J. Zhang, M. J. Ahn, Q. S. Sun, K. Y. Kim, Y. H. Hwang, J. M. Ryu, J. Kim, Inhibitors of Bone Resorption from Halenia Corniculata, Arch Pharm Res, Vol. 31, No. 7, 2008, pp. 850-5, https://doi.org/10.1007/s12272-001-1237-y.
[11] E. Idrus, K. Bramma, Mangosteen Extract Inhibits LPS-induced Bone Resorption by Controlling Osteoclast, Chin. Med., Vol. 9, 2016, pp. 362-367.
[12] E. N. Kim, J. Kwon, H. S. Lee, S. Lee, D. Lee, G. S. Jeong, Inhibitory Effect of Cudratrixanthone U on RANKL-induced Osteoclast Differentiation and Function in Macrophages and BMM Cells, Front Pharmacol, Vol. 11, 2020, pp. 1048, https://doi.org/10.3389/fphar.2020.01048.
[13] G. Pifferi, P. Da Re, P. Valenti, A. Bisi, S. Malandrino, Synthesis and Bone Resorption Effect of Alkoxy-substituted Xanthones, Arch Pharm (Weinheim), Vol. 330, No. 7, 1997, pp. 233-234, https://doi.org/10.1002/ardp.19973300708.
[14] International Osteoporosis Foundation. Epidemiology of Osteoporosis and Fragility Fractures,
https://www.osteoporosis.foundation/health-professionals/about-osteoporosis/epidemiology/, 2024 (accessed on: August 15th, 2024).
[15] D. K. Hoang, M. C. Doan, L. D. Mai, T. P. H. Le, L. T. Ho-Pham, Burden of Osteoporosis in Vietnam: An Analysis of Population Risk, PLoS One, Vol. 16, No. 6, 2021, pp. e0252592, https://doi.org/10.1371/journal.pone.0252592.
[16] K. N. Tu, J. D. Lie, C. K. V. Wan, M. Cameron, A. G. Austel, J. K. Nguyen, K. Van, D. Hyun, Osteoporosis: a Review of Treatment Options, P. T., Vol. 43, No. 2, 2018, pp. 92-104, https://pubmed.ncbi.nlm.nih.gov/29386866/.
[17] H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda, Osteoclast Differentiation Factor is a Ligand for Osteoprotegerin/Osteoclastogenesis-Inhibitory Factor and is Identical to TRANCE/RANKL, PNAS, Vol. 95, No. 7, 1998, pp. 3597-602, https://doi.org/10.1073/pnas.95.7.3597.
[18] T. Matsumoto, I. Endo, RANKL as a Target for the Treatment of Osteoporosis, JBMM, Vol. 39, No. 1, 2021, pp. 91-105, https://doi.org/10.1007/s00774-020-01153-7.
[19] S. S. Li, S.H. He, P. Y. Xie, W. Li, X. X. Zhang, T. F. Li, D. F. Li, Recent Progresses in the Treatment of Osteoporosis, Front Pharmacol, Jul, Vol. 22, No. 12, 2021, pp. 717065, https://doi.org/10.3389/fphar.2021.717065.
[20] S. Padilla, J. Cowden, D. E. Hinton, B. Yuen, S. Law, S. W. Kullman, R. Johnson, R. C. Hardman, K. Flynn, D. W. Au, Use of Medaka in Toxicity Testing, Curr Protoc Toxicol, Chapter 1, 2009, pp. Unit1.10, https://doi.org/10.1002/0471140856.tx0110s39.
[21] C. Y. Lin, C. Y. Chiang, H. J. Tsai, Zebrafish and Medaka: New Model Organisms for Modern Biomedical Research, J Biomed Sci, Vol. 23, No. 1, 2016, pp. 19, https://doi.org/10.1186/s12929-016-0236-5.
[22] H. Takeda, M. Tanaka, K. Naruse, Medaka: A Model for Organogenesis, Human Disease, and Evolution, Springer Tokyo, 2011.
[23] H. Takeda, Draft Genome of The Medaka Fish: A Comprehensive Resource for Medaka Developmental Genetics and Vertebrate Evolutionary Biology, Dev Growth Differ, Vol. 50, No. 1, 2008, pp. S157-66, https://doi.org/10.1111/j.1440- 169X.2008.00992.x.
[24] J. Renn, C. Winkler, Osterix-mCherry Transgenic Medaka for In vivo Imaging of Bone Formation, Dev Dyn, Vol. 238, No. 1, 2009, pp. 241-248, https://doi.org/10.1002/dvdy.21836.
[25] M. Chatani, Y. Takano, A. Kudo, Osteoclasts in Bone Modeling, as Revealed by In vivo Imaging, Are Essential for Organogenesis in Fish, Dev Biol, Vol. 360, No. 1, 2011, pp. 96-109, https://doi.org/10.1016/j.ydbio.2011.09.013.
[26] K. Inohaya, Y. Takano, A. Kudo, the Teleost Intervertebral Region Acts as a Growth Center of the Centrum: In vivo Visualization of Osteoblasts and Their Progenitors in Transgenic Fish, Dev Dyn, Vol. 236, No. 11, 2007, pp. 3031-46, https://doi.org/10.1002/dvdy.21329.
[27] J. Renn, A. Büttner, T. T. To, S. J. H. Chan, C. Winkler, a col10a1:nlGFP Transgenic Line Displays Putative Osteoblast Precursors at the Medaka Notochordal Sheath Prior to Mineralization, Dev. Biol., Vol. 381, No. 1, 2013, pp. 134-143, https://doi.org/10.1016/j.ydbio.2013.05.030.
[28] T. T. To, P. E. Witten, J. Renn, D. Bhattacharya, A. Huysseune, C. Winkler, Rankl-induced Osteoclastogenesis Leads to Loss of Mineralization in a Medaka Osteoporosis Model, Development, Vol. 139, No. 1, 2012, pp. 141-150, https://doi.org/10.1242/dev.071035.
[29] Q. T. Phan, W. H. Tan, R. Liu, S. Sundaram, A. Buettner, S. Kneitz, B. Cheong, H. Vyas, S. Mathavan, M. Schartl, C. Winkler, Cxcl9l and Cxcr3.2 Regulate Recruitment of Osteoclast Progenitors to Bone Matrix in a Medaka Osteoporosis Model, PNAS, Vol. 117, No. 32, 2020, pp. 19276-19286, https://doi.org/doi:10.1073/pnas.2006093117.
[30] C. V. Pham, T. T. Pham, T. T. Lai, D. C. Trinh, H. V. M. Nguyen, T. T. M. Ha, T. T. Phuong, L. D. Tran, C. Winkler, T. T. To, Icariin Reduces Bone Loss in a Rankl-induced Transgenic Medaka (Oryzias latipes) Model for Osteoporosis, J. Fish Biol, Vol. 98, No. 4, 2021, pp. 1039-1048, https://doi.org/10.1111/jfb.14241.
[31] T. T. To, D. H. Mai, T. T. Phuong, D. L. Tran, Oleanoic Acid Alleviates Bone Damage in a Medaka Osteoporosis Model, Vietnam J. Physiol., Vol. 25, No. 3, 2022, pp. 28-33, https://doi.org/10.54928/vjop.v25i3.52.
[32] T. T. Pham, C. V. Pham, H. T. Nguyen, L. D. Tran, T. T. To, Segregation of rankl:HSE:CFP Medaka Transgenic Fish Line for Use as Osteoporosis Models, VNU JS:NST, Vol. 31, No. 4S, 2015, pp. 24-34 (in Vietnamese).
[33] Graphpad Software Inc., Graphpad Prism User Guide, 1995-2014.
[34] K. Likhitwitayawuid, T. Phadungcharoen, J. Krungkrai, Antimalarial Xanthones from Garcinia Cowa, Planta Med, Vol. 64, No. 1, 1998, pp. 70-72, https://doi.org/10.1055/s-2006-957370.
[35] S. Fazry, M. A. M. Noordin, S. Sanusi, M. M. Noor, W. M. Aizat, A. M. Lazim, H. R. E. Dyari, N. H. Jamar, J. Remali, B. A. Othman, D. Law, N. M. Sidik, Y. H. Cheah, Y. C. Lim, Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish (Danio rerio) Embryos, Toxics, Vol. 6, No. 4, 2018, https://doi.org/10.3390/toxics6040060.
[36] L. U. Setyawati, W. Nurhidayah, N. K. Khairul Ikram, W. E. Mohd Fuad, M. Muchtaridi, General Toxicity Studies of Alpha Mangostin from Garcinia mangostana: A Systematic Review, Heliyon, Vol. 9, No. 5, 2023, pp. e16045,
https://doi.org/10.1016/j.heliyon.2023.e16045.
[37] W. Kittipaspallop, P. Taepavarapruk, C. Chanchao, W. Pimtong, Acute Toxicity and Teratogenicity of α-mangostin in Zebrafish Embryos, Exp Biol Med (Maywood), Vol. 243, No. 15-16, 2018, pp. 1212-1219,
https://doi.org/10.1177/1535370218819743.
[38] W. Pimtong, W. Kitipaspallop, H. S. Chun, W. K. Kim, Effects of α-mangostin on Embryonic Development and Liver Development in Zebrafish, Mol Cell Toxicol, Vol. 16, No. 4, 2020, pp. 469-476, https://doi.org/10.1007/s13273-020-00099-1.
[39] W. Zhang, G. Jiang, X. Zhou, L. Huang, J. Meng, B. He, Y. Qi, α-mangostin Inhibits LPS-induced Bone Resorption by Restricting Osteoclastogenesis via NF-κB and MAPK Signaling, Chin Med, Vol. 17, No. 1, 2022, pp. 34, https://doi.org/10.1186/s13020-022-00589-5.
[40] X. J. Lv, F. Ding, Y. J. Wei, R. X. Tan, Antiosteoporotic Tetrahydroxanthone Dimers from Aspergillus Brunneoviolaceus FB-2 Residing in Human Gut, Chin. J. Chem., Vol. 39, No. 6, 2021, pp. 1580-1586,
https://doi.org/10.1002/cjoc.202100026.