Isolation of Cowanol from the Garcinia oblongifolia Plant and Evaluation of its in vivo Toxicity and Bone-protective Activity in Medaka Fish (Oryzias latipes)
Main Article Content
Abstract
Garcinia oblongifolia Champ. ex Benth is a plant species widely distributed in Vietnam. It contains xanthones - bioactive compounds known for their potent antioxidant, anti-inflammatory, and anticancer properties. Xanthones have also emerged as potential bone-protective agents. Here, cowanol, a common xanthone, was isolated from the branches of G. oblongifolia in Binh Dinh Province, with 98.4% purity. The in vivo toxicity and bone-protective activity of cowanol were assessed using medaka (Oryzias latipes), a standardized fish model in toxicity and disease research. Acute toxicity was evaluated over a 96-hour exposure period, assessing wild-type embryos (24-120 hours post-fertilization) to concentrations ranging from 2 to 50 µM and larvae (7-11 days post-fertilization) to the doses of 2 to 30 µM. Results showed that cowanol was non-toxic to embryos but exhibited dose- and time-dependent toxicity to larvae, with the lethal concentration 50 (LC50) of 11.4 µM. At the doses of 2 µM or lower, cowanol was safe for medaka larvae. The bone-protective effect of cowanol was investigated using rankl:HSE:CFP transgenic larvae model for osteoporosis. Our findings revealed that cowanol significantly reduced bone damage in the Rankl-induced osteoporosis fish at three tested doses of 0.5, 1.5, or 2 µM with bone protection indexes reaching up to 29.38%. This study highlights the potential exploration of xanthones from Vietnamese plants for therapeutic applications.
References
[2] P. H. Ho, An Illustrated Flora of Vietnam, Tre Publishing House, Ho Chi Minh City, 1999 (in Vietnamese).
[3] L. T. Do, Medicinal Plants and Herbs of Vietnam, Medical Publisher, 2004 (in Vietnamese).
[4] B. T. Trinh, T. T. Quach, D. N. Bui, D. Staerk, L. D. Nguyen, A. K. Jäger, Xanthones from the Twigs of Garcinia Oblongifolia and Their Antidiabetic Activity, Fitoterapia, Vol. 118, 2017, pp. 126-131, https://doi.org/10.1016/j.fitote.2017.03.003.
[5] S. Feng, Y. Jiang, J. Li, S. Qiu, T. Chen, A New Bixanthone Derivative from the Bark of Garcinia Oblongifolia, Nat Prod Res, Vol. 28, No. 2, 2014, pp. 81-85, https://doi.org/10.1080/14786419.2013.841686.
[6] H. Zhang, D. Zheng, Z. J. Ding, Y. Z. Lao, H. S. Tan, H. X. Xu, Corrigendum: UPLC-PDA-QTOFMS-guided Isolation of Prenylated Xanthones and Benzoylphloroglucinols from the Leaves of Garcinia Oblongifolia and Their Migration-Inhibitory Activity, Sci Rep, Vol. 6, 2016, pp. 39369, https://doi.org/10.1038/srep39369.
[7] S. X. Huang, C. Feng, Y. Zhou, G. Xu, Q. B. Han, C. F. Qiao, D. C. Chang, K. Q. Luo, H. X. Xu, Bioassay-guided Isolation of Xanthones and Polycyclic Prenylated Acylphloroglucinols from Garcinia Oblongifolia, J. Nat Prod, Vol. 72, No. 1, 2024, pp. 130-135, https://doi.org/10.1021/np800496c.
[8] M. K. Pandey, V. P. Kale, C. Song, S. S. Sung, A. K. Sharma, G. Talamo, S. Dovat, S. G. Amin, Gambogic Acid Inhibits Multiple Myeloma Mediated Osteoclastogenesis Through Suppression of Chemokine Receptor CXCR4 Signaling Pathways, Exp Hematol, Vol. 42, No. 10, 2014, pp. 883-896, https://doi.org/10.1016/j.exphem.2014.07.261.
[9] U. Kresnoadi, M. D. Ariani, E. Djulaeha, N. Hendrijantini, The Potential of Mangosteen (Garcinia Mangostana) Peel Extract, Combined with Demineralized Freeze-Dried Bovine Bone Xenograft, to Reduce Ridge Resorption and Alveolar Bone Regeneration in Preserving the Tooth Extraction Socket, J Indian Prosthodont Soc, Vol. 17, No. 3, 2017, pp. 282-288, https://doi.org/10.4103/jips.jips_64_17.
[10] J. Zhang, M. J. Ahn, Q. S. Sun, K. Y. Kim, Y. H. Hwang, J. M. Ryu, J. Kim, Inhibitors of Bone Resorption from Halenia Corniculata, Arch Pharm Res, Vol. 31, No. 7, 2008, pp. 850-5, https://doi.org/10.1007/s12272-001-1237-y.
[11] E. Idrus, K. Bramma, Mangosteen Extract Inhibits LPS-induced Bone Resorption by Controlling Osteoclast, Chin. Med., Vol. 9, 2016, pp. 362-367.
[12] E. N. Kim, J. Kwon, H. S. Lee, S. Lee, D. Lee, G. S. Jeong, Inhibitory Effect of Cudratrixanthone U on RANKL-induced Osteoclast Differentiation and Function in Macrophages and BMM Cells, Front Pharmacol, Vol. 11, 2020, pp. 1048, https://doi.org/10.3389/fphar.2020.01048.
[13] G. Pifferi, P. Da Re, P. Valenti, A. Bisi, S. Malandrino, Synthesis and Bone Resorption Effect of Alkoxy-substituted Xanthones, Arch Pharm (Weinheim), Vol. 330, No. 7, 1997, pp. 233-234, https://doi.org/10.1002/ardp.19973300708.
[14] International Osteoporosis Foundation. Epidemiology of Osteoporosis and Fragility Fractures,
https://www.osteoporosis.foundation/health-professionals/about-osteoporosis/epidemiology/, 2024 (accessed on: August 15th, 2024).
[15] D. K. Hoang, M. C. Doan, L. D. Mai, T. P. H. Le, L. T. Ho-Pham, Burden of Osteoporosis in Vietnam: An Analysis of Population Risk, PLoS One, Vol. 16, No. 6, 2021, pp. e0252592, https://doi.org/10.1371/journal.pone.0252592.
[16] K. N. Tu, J. D. Lie, C. K. V. Wan, M. Cameron, A. G. Austel, J. K. Nguyen, K. Van, D. Hyun, Osteoporosis: a Review of Treatment Options, P. T., Vol. 43, No. 2, 2018, pp. 92-104, https://pubmed.ncbi.nlm.nih.gov/29386866/.
[17] H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda, Osteoclast Differentiation Factor is a Ligand for Osteoprotegerin/Osteoclastogenesis-Inhibitory Factor and is Identical to TRANCE/RANKL, PNAS, Vol. 95, No. 7, 1998, pp. 3597-602, https://doi.org/10.1073/pnas.95.7.3597.
[18] T. Matsumoto, I. Endo, RANKL as a Target for the Treatment of Osteoporosis, JBMM, Vol. 39, No. 1, 2021, pp. 91-105, https://doi.org/10.1007/s00774-020-01153-7.
[19] S. S. Li, S.H. He, P. Y. Xie, W. Li, X. X. Zhang, T. F. Li, D. F. Li, Recent Progresses in the Treatment of Osteoporosis, Front Pharmacol, Jul, Vol. 22, No. 12, 2021, pp. 717065, https://doi.org/10.3389/fphar.2021.717065.
[20] S. Padilla, J. Cowden, D. E. Hinton, B. Yuen, S. Law, S. W. Kullman, R. Johnson, R. C. Hardman, K. Flynn, D. W. Au, Use of Medaka in Toxicity Testing, Curr Protoc Toxicol, Chapter 1, 2009, pp. Unit1.10, https://doi.org/10.1002/0471140856.tx0110s39.
[21] C. Y. Lin, C. Y. Chiang, H. J. Tsai, Zebrafish and Medaka: New Model Organisms for Modern Biomedical Research, J Biomed Sci, Vol. 23, No. 1, 2016, pp. 19, https://doi.org/10.1186/s12929-016-0236-5.
[22] H. Takeda, M. Tanaka, K. Naruse, Medaka: A Model for Organogenesis, Human Disease, and Evolution, Springer Tokyo, 2011.
[23] H. Takeda, Draft Genome of The Medaka Fish: A Comprehensive Resource for Medaka Developmental Genetics and Vertebrate Evolutionary Biology, Dev Growth Differ, Vol. 50, No. 1, 2008, pp. S157-66, https://doi.org/10.1111/j.1440- 169X.2008.00992.x.
[24] J. Renn, C. Winkler, Osterix-mCherry Transgenic Medaka for In vivo Imaging of Bone Formation, Dev Dyn, Vol. 238, No. 1, 2009, pp. 241-248, https://doi.org/10.1002/dvdy.21836.
[25] M. Chatani, Y. Takano, A. Kudo, Osteoclasts in Bone Modeling, as Revealed by In vivo Imaging, Are Essential for Organogenesis in Fish, Dev Biol, Vol. 360, No. 1, 2011, pp. 96-109, https://doi.org/10.1016/j.ydbio.2011.09.013.
[26] K. Inohaya, Y. Takano, A. Kudo, the Teleost Intervertebral Region Acts as a Growth Center of the Centrum: In vivo Visualization of Osteoblasts and Their Progenitors in Transgenic Fish, Dev Dyn, Vol. 236, No. 11, 2007, pp. 3031-46, https://doi.org/10.1002/dvdy.21329.
[27] J. Renn, A. Büttner, T. T. To, S. J. H. Chan, C. Winkler, a col10a1:nlGFP Transgenic Line Displays Putative Osteoblast Precursors at the Medaka Notochordal Sheath Prior to Mineralization, Dev. Biol., Vol. 381, No. 1, 2013, pp. 134-143, https://doi.org/10.1016/j.ydbio.2013.05.030.
[28] T. T. To, P. E. Witten, J. Renn, D. Bhattacharya, A. Huysseune, C. Winkler, Rankl-induced Osteoclastogenesis Leads to Loss of Mineralization in a Medaka Osteoporosis Model, Development, Vol. 139, No. 1, 2012, pp. 141-150, https://doi.org/10.1242/dev.071035.
[29] Q. T. Phan, W. H. Tan, R. Liu, S. Sundaram, A. Buettner, S. Kneitz, B. Cheong, H. Vyas, S. Mathavan, M. Schartl, C. Winkler, Cxcl9l and Cxcr3.2 Regulate Recruitment of Osteoclast Progenitors to Bone Matrix in a Medaka Osteoporosis Model, PNAS, Vol. 117, No. 32, 2020, pp. 19276-19286, https://doi.org/doi:10.1073/pnas.2006093117.
[30] C. V. Pham, T. T. Pham, T. T. Lai, D. C. Trinh, H. V. M. Nguyen, T. T. M. Ha, T. T. Phuong, L. D. Tran, C. Winkler, T. T. To, Icariin Reduces Bone Loss in a Rankl-induced Transgenic Medaka (Oryzias latipes) Model for Osteoporosis, J. Fish Biol, Vol. 98, No. 4, 2021, pp. 1039-1048, https://doi.org/10.1111/jfb.14241.
[31] T. T. To, D. H. Mai, T. T. Phuong, D. L. Tran, Oleanoic Acid Alleviates Bone Damage in a Medaka Osteoporosis Model, Vietnam J. Physiol., Vol. 25, No. 3, 2022, pp. 28-33, https://doi.org/10.54928/vjop.v25i3.52.
[32] T. T. Pham, C. V. Pham, H. T. Nguyen, L. D. Tran, T. T. To, Segregation of rankl:HSE:CFP Medaka Transgenic Fish Line for Use as Osteoporosis Models, VNU JS:NST, Vol. 31, No. 4S, 2015, pp. 24-34 (in Vietnamese).
[33] Graphpad Software Inc., Graphpad Prism User Guide, 1995-2014.
[34] K. Likhitwitayawuid, T. Phadungcharoen, J. Krungkrai, Antimalarial Xanthones from Garcinia Cowa, Planta Med, Vol. 64, No. 1, 1998, pp. 70-72, https://doi.org/10.1055/s-2006-957370.
[35] S. Fazry, M. A. M. Noordin, S. Sanusi, M. M. Noor, W. M. Aizat, A. M. Lazim, H. R. E. Dyari, N. H. Jamar, J. Remali, B. A. Othman, D. Law, N. M. Sidik, Y. H. Cheah, Y. C. Lim, Cytotoxicity and Toxicity Evaluation of Xanthone Crude Extract on Hypoxic Human Hepatocellular Carcinoma and Zebrafish (Danio rerio) Embryos, Toxics, Vol. 6, No. 4, 2018, https://doi.org/10.3390/toxics6040060.
[36] L. U. Setyawati, W. Nurhidayah, N. K. Khairul Ikram, W. E. Mohd Fuad, M. Muchtaridi, General Toxicity Studies of Alpha Mangostin from Garcinia mangostana: A Systematic Review, Heliyon, Vol. 9, No. 5, 2023, pp. e16045,
https://doi.org/10.1016/j.heliyon.2023.e16045.
[37] W. Kittipaspallop, P. Taepavarapruk, C. Chanchao, W. Pimtong, Acute Toxicity and Teratogenicity of α-mangostin in Zebrafish Embryos, Exp Biol Med (Maywood), Vol. 243, No. 15-16, 2018, pp. 1212-1219,
https://doi.org/10.1177/1535370218819743.
[38] W. Pimtong, W. Kitipaspallop, H. S. Chun, W. K. Kim, Effects of α-mangostin on Embryonic Development and Liver Development in Zebrafish, Mol Cell Toxicol, Vol. 16, No. 4, 2020, pp. 469-476, https://doi.org/10.1007/s13273-020-00099-1.
[39] W. Zhang, G. Jiang, X. Zhou, L. Huang, J. Meng, B. He, Y. Qi, α-mangostin Inhibits LPS-induced Bone Resorption by Restricting Osteoclastogenesis via NF-κB and MAPK Signaling, Chin Med, Vol. 17, No. 1, 2022, pp. 34, https://doi.org/10.1186/s13020-022-00589-5.
[40] X. J. Lv, F. Ding, Y. J. Wei, R. X. Tan, Antiosteoporotic Tetrahydroxanthone Dimers from Aspergillus Brunneoviolaceus FB-2 Residing in Human Gut, Chin. J. Chem., Vol. 39, No. 6, 2021, pp. 1580-1586,
https://doi.org/10.1002/cjoc.202100026.