Investigation of the Venom Protein Profile of the Malayan Pit Viper calloselasma rhodostoma (kuhl, 1824) from Vietnam and Toward Toxin Neutralization
Main Article Content
Abstract
Nearly 60 snake species belonging mainly to the Viperidae and Elapidae families are critical threats to human health in Vietnam with thousands of snakebite victims annually. Calloselasma rhodostoma − the Malayan Pit Viper is documented to cause high mortality rates in Southeast Asia. The major components of snake venom include SVMP (Snake Venom Metalloproteinase), SVSP (Snake Venom Serine protease), and PLA2 (Phospholipase A2). Information regarding the venom protein composition plays a crucial role in antivenom compound research and development. However, currently, there is no study carried out to investigate these major toxins and their activities in the Malayan pit viper in Vietnam. Using consecutive differential centrifugation, SDS−PAGE analysis, and plate diffusion assay, we demonstrated the presence of several proteases in the venom of C. rhodostoma from Vietnam. In the supernatant fractions, five dominant bands predicted to represent groups of SVMPs, PLA2, SVSP could be observed. Three concentrated fractions, C100, C50, and C10 showed proteolytic activity with the largest substrate clear zone belonging to the fraction containing higher molecular weight SVMPs. This study provided for the first time evidence of venom toxins’ presence in the venom of the Malayan pit viper from Vietnam and their activity towards the screening of antivenom drugs.
References
[2] N. A. Thinh, L. Hens, Human Ecology of Climate Change Hazards in Vietnam, Cham, Switzerland: Springer International Publishing, 2019.
[3] O. Khow, P. Chulasugandha, N. Pakmanee, Venom Protein of the Haematotoxic Snakes Cryptelytrops Albolabris, Calloselasma Rhodostoma, and Daboia Russelii Siamensis, Science Asia, Vol. 37, 2011, pp. 377-381.
[4] U. Peter, F. Paul, H. Jiri (eds.), The Reptile Database,fhttp://www.reptile-database.org./ (accessed on: September 15th, 2024)
[5] J. M. Gutiérrez, J. J. Calvete, G. A. Habib, R. A. Harrison, D. J. Williams, D. A. Warrell, Snakebite Envenoming, Nature Reviews Disease Primers, Vol. 3, No. 17063, 2017, pp. 1-21.
[6] Venomous snakes of the South-East Asia Region, Their Venoms and Pathophysiology of Human Envenoming, World Health Organization: Geneva, Switzerland, 2nd Edition, 2016 (accessed on: September 15th, 2023).
[7] A. K. Ismail, Snakebite and Envenomation Management in Malaysia, Toxinology: Clinical Toxinology in Asia Pacific and Africa, Vol. 2, 2015, pp. 71-102.
[8] N. V. Sang, H. T. Cuc, N. Q. Truong, Herpetofauna of Vietnam, Edition Chimaira, Frankfurt am Main, 2009.
[9] L. K. Quyen, Clinical Evaluation of Snakebites in Vietnam: A Study from Cho Ray Hospital, M.Sc. Dissertation, National University of Singapore, 2003.
[10] P. Adisakwattana, L. Chanhome, N. Chaiyabutr, O. Phuphisut, O. Reamtong, C. Thawornkuno, Venom-gland Transcriptomics of the Malayan Pit Viper (Calloselasma rhodostoma) for Identification, Classification, and Characterization of Venom Proteins, Heliyon, Vol. 9, No. 5, 2023, pp. e15476.
[11] L. A. Oliveira, M. F. Viegas, S. L. da Silva, A. M. Soares, M. J. Ramos, P. A. Fernandes, The Chemistry of Snake Venom and its Medicinal Potential, Nature Reviews Chemistry, Vol. 6, No. 7, 2022, pp. 451-469.
[12] X. Zhang, Y. Shuai, H. Tao, C. Li, L. He, Novel Method for the Quantitative Analysis of Protease Activity: The Casein Plate Method and its Applications, ACS Omega, Vol. 6, No. 5, 2021, pp. 3675-3680.
[13] S. Suji, M. D. Dinesh, K. U. Keerthi, K. P. Anagha, J. Arya, K. V. Anju, Evaluation of Neutralization Potential of Naja naja and Daboia russelii Snake Venom by Root Extract of Cyanthillium Cinereum, Indian Journal of Critical Care Medicine: Peer-reviewed, Official Publication of Indian Society of Critical Care Medicine, Vol. 27, No. 11, 2023, pp. 821.
[14] N. T. T. Nhung, V. T. Hien, P. T. Hoa, H. T. Thu, N. T. Hoa, M. T. Linh, D. V. Quyen, Fractionation of Proteins from the Venom of Snake Ophiophagus Hannah in Vietnam and Their Effects on Adipogenesis in 3T3-L1 Cells, Vietnam Journal of Biotechnology, Vol. 14, No. 2, 2016, pp. 225-230 (in Vietnamese).
[15] T. V. Thien, H. N. Anh, N. V. M. Khoi, L. N. Hung, P. V. Trung, Determination of Molecular Weight of some Components in Bungarus fasciatus Snake Venom by High-resolution Mass Spectrometry, Journal of Science and Technology - University of Da Nang, Vol. 9, 2017, pp. 109-111.
[16] M. A. Kadafi, A. Hamidy, N. Kurniawan, The Morphological Characters of the Malayan Pit Viper Calloselasma rhodostoma (Kuhl, 1824): On the Cephalic Scalation and Distribution Status in Indonesia, The Journal of Experimental Life Science, Vol. 8, No. 3, 2018.
[17] M. M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-dye Binding, Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254.
[18] S. Gao, B. Xie, Membrane Fouling and Control in Algae-rich Water Treatment, E3S Web of Conferences, Vol. 520, No. 01007, 2024.
[19] L. Yuan, G. T. Cole, Isolation and Characterization of an Extracellular Proteinase of Coccidioides immitis, Infect Immun, Vol. 55, No. 9, 1987, pp. 1970-1978.
[20] J. M. Danse, Molecular Biology of Snake Venom Phospholipases A2. Venom Phospholipase A2 Enzymes, 1997, pp. 29-71.
[21] E. L. H. Tang, C. H. Tan, S. Y. Fung, N. H. Tan, Venomics of Calloselasma rhodostoma, the Malayan Pit Viper: A Complex Toxin Arsenal Unraveled, Journal of Proteomics, Vol. 148, 2016, pp. 44-56.
[22] E. L. H. Tang, N. H. Tan, S. H. Fung, C. H. Tan, Comparative Proteomes, Immunoreactivities and Neutralization of Procoagulant Activities of Calloselasma rhodostoma (Malayan Pit Viper) Venoms from Four Regions in Southeast Asia, Toxicon, Vol. 169, 2019, pp. 91-102.
[23] P. Choudhary, V. K. Mishra, S. Swarnakar, Zymography and Reverse Zymography for Testing Proteases and their Inhibitors in Cancer Biomarkers: Methods and Protocols, New York, NY: Springer US, 2022, pp. 107-120.
[24] E. Wachtel, M. A. Bittenbinder, B. van de Velde, J. Slagboom, A. de Monts de Savasse, L. L. Alonso, F. J. Vonk, J. Kool, Application of an Extracellular Matrix-Mimicking Fluorescent Polymer for the Detection of Proteolytic Venom Toxins, Toxins, Vol. 15, Iss. 4, 2023, pp. 294.
[25] J. M. Gutiérrez, M. Vargas, Á. Segura, M. Herrera, M. Villalta, G. Solano, G. León, In Vitro Tests for Assessing the Neutralizing Ability of Snake Antivenoms: Toward the 3Rs Principles, Frontiers in Immunology, Vol. 11, No. 617429, 2021.