Mai Duc Huynh, Nguyen Quang Minh, Tran Huu Trung, Do Van Cong, Nguyen Thi Thai, Nguyen Tien Minh, Dang Thanh Huyen, Minh Viet Nguyen, Ngo Hong Anh Thu, Do Van Son, Nguyen Vu Giang

Main Article Content

Abstract

In this article, presents research on the application of MBBR technology using porous HDPE/PEO carriers for the treatment of hospital wastewater. The results showed the effectiveness of treating analytical parameters (pH, BOD, TSS, NH4+, NO3-). Porous polyethylene (PE) carriers were modified with polyethylene oxide (PEO) and polyethylene glycol methyl ether acrylate (PEgMA) to enhance bacterial adhesion and growth. The obtained carriers had a density of 0.61 g/cm³ and a porosity of 40.48% with pore diameters in the range of 50-500 µm. The efficiency of the carriers in treating domestic wastewater was evaluated at Hung Yen Eye Hospital. After 8 weeks of operation, the significant removal of ammonium reached 99.8% and the Nitrate parameters also decreased significantly. These findings highlight the potential of PE-based materials in promoting MBBR technology for effective treatment of domestic wastewater, providing a sustainable and scalable solution.

Keywords: Biochip, wastewater treatment materials, HDPE/PEO media, MBBR

References

[1] Almomani, R. R. Bohsale, Optimizing Nutrient Removal of Moving Bed Biofilm Reactor Process using Response Surface Methodology, Bioresource Technology, Vol. 305, 2020, pp. 123059.
[2] B. Rusten, L. J. Hem, H. Ødegaard, Nitrification of Municipal Wastewater in Moving-Bed Biofilm Reactors, Water Environ. Res., Vol. 67, 1995, pp. 75-86.
[3] V. Saravanan, T. R. Sreekrishnan, Modelling Anaerobic Biofilm Reactors - A Review, J. Environ, Manag., Vol. 81, 2006, pp. 1-18.
[4] B. Rusten, B. Eikebrokk, Y. Ulgenes, E. Lygren, Design and Operations of the Kaldnes Moving Bed Biofilm Reactors, Aquac. Eng., Vol. 34, 2006, pp. 322-331.
[5] J. P. Bassin, M. Dezotti, Moving Bed Biofilm Reactor (MBBR), in: Advances in Biological Processes for Wastewater Treatment: Emerging and Consolidated Technologies, Springer International Publishing, 2017, pp. 37-74.
[6] I. D. Manariotis, S. G. Grigoropoulos, Anaerobic Filter Treatment of Municipal Wastewater: Biosolids Behavior, J. Environ. Eng.-ASCE, Vol. 132, 2006, pp. 23-31.
[7] L. S. Zhang, W. Z. Wu, J. L. Wang, Immobilization of Activated Sludge Using Improved Polyvinyl Alcohol (PVA) Gel, J. Environ. Sci., Vol. 19, 2007, pp. 1293-1297.
[8] M. X. Loukidou, A. I. Zouboulis, Comparison of Two Biological Treatment Processes Using Attached-Growth Biomass for Sanitary Landfill Leachate Treatment, Environ, Pollut., Vol. 111, 2001, pp. 273-281.
[9] S. Sfaelou, C. A. Papadimitriou, I. D. Manariotis, J. D. Rouse, J. Vakros, K. K. Karapanagioti, Treatment of Low-Strength Municipal Wastewater Containing Phenanthrene Using Activated Sludge and Biofilm Process, Desalination and Water Treatment, 2015, pp. 1-11.
[10] A. Aygun, B. Nas, A. Berktay, Influence of High Organic Loading Rates on COD Removal and Sludge Production in Moving Bed Biofilm Reactor, Environ. Eng. Sci., Vol. 25, 2008, pp. 1311-1316.
[11] J. L. Shore, W. S. M’Coy, C. K. Gunsch, M. A. Deshusses, Application of a Moving Bed Biofilm Reactor for Tertiary Ammonia Treatment in High Temperature Industrial Wastewater, Bioresour. Technol., Vol. 112, 2012, pp. 51-60.
[12] J. L. Shore, W. S. M’Coy, C. K. Gunsch, M. A. Deshusses, Application of a Moving Bed Biofilm Reactor for Tertiary Ammonia Treatment in High Temperature Industrial Wastewater, Bioresour. Technol., Vol. 112, 2012, pp. 51-60.
[13] M. Levstek, I. Plazl, J. D. Rouse, Estimation of the Specific Surface Area for a Porous Carrier, Acta Chim. Slov., Vol. 57, 2010, pp. 45-51.
[14] A. Mašić, J. Bengtsson, M. Christensson, Measuring and Modeling the Oxygen Profile in a Nitrifying Moving Bed Biofilm Reactor, Mathematical Biosciences, Vol. 227, 2010, pp. 1-11.
[15] D. Klempner, K. C. Frisch, Handbook of Polymeric Foams and Foam Technology, Hanser, New York, 1991.
[16] Y. L. Huang, Q. B. Li, X. Deng, Y. H. Lu, X. K. Liao, M. Y. Hong, Y. Wang, Aerobic and Anaerobic Biodegradation of Polyethylene Glycols Using Sludge Microbes, Process Biochem., Vol. 40, No. 1, 2005, pp. 207-211, https://doi.org/10.1016/j.procbio.2003.12.004.
[17] G. M. Gutenberger, O. M. Holgate, W. A. Arnold, J. S. Guest, P. J. Novak, Polyethylene Glycol as a Robust, Biocompatible Encapsulant for Two-Stage Treatment of Food and Beverage Wastewater, Environ. Sci.: Water Res. Technol., Vol. 2, No. 2, 2024, https://doi.org/10.1039/D3EW00633F.
[18] G. M. Gutenberger, O. M. Holgate, W. A. Arnold, J. S. Guest, P. J. Novak, Polyethylene Glycol as a Robust, Biocompatible Encapsulant for Two-Stage Treatment of Food and Beverage Wastewater, Environ. Sci.: Water Res. Technol., Vol. 2, No. 2, 2024, https://doi.org/10.1039/D3EW00633.
[19] S. G. Prasad, C. Lal, K. R. Sahu, A. Saha, U. De, Spectroscopic Investigation of Degradation Reaction Mechanism in γ-Rays Irradiation of HDPE, Biointerface Res. Appl. Chem., Vol. 11, No. 2, 2021, pp. 9405-9419,
https://doi.org/10.33263/BRIAC112.94059419.
[20] X. He, L. Wang, K. Lv, W. Li, S. Qin, Z. Tang, Polyethylene Oxide Assisted Fish Collagen-Poly ε-Caprolactone Nanofiber Membranes by Electrospinning, Nanomaterials, Vol. 12, No. 6, 2022, pp. 900,
https://doi.org/10.3390/nano12060900.