Seasonal variation and potential environmental risk of pharmaceutical residues in West Lake and Yen So Lake, Hanoi
Main Article Content
Abstract
This study investigated the occurrence and seasonal variation of 16 pharmaceutical residues in surface water collected from West Lake (WL) and Yen So Lake (YSL), Hanoi. A total of 20 surface water samples were collected from each lake with a frequency of 5 samples every 3 months. The observation was performed for both rainy and dry seasons from January 2020 to December 2020 during the pandemic of Covid-19. The laboratory analyses revealed that pharmaceutical residues were widely distributed in these lakes. The total pharmaceutical concentration in YSL (21.3 – 49.9 µg/L) was higher than that in WL (15.7 – 38.6 µg/L). Among these, norfloxacin was detected at the highest concentration ranging from 0.83 – 21.2 µg/L and 0.61 – 17.3 µg/L in WL and YSL respectively while cefotaxime was not detected in WL and in 7/20 samples collected in YSL with concentration ranging from 0.05 – 2.1 µg/L. Total pharmaceutical concentrations were mostly observed significantly higher in the wet season than in the dry season for both lakes. The potential ecological risks of these compounds were also evaluated. Results showed that those compounds displayed from negligible to high risk. The result could provide the valuable situation of pharmaceutical residues in two main lakes in Hanoi and enhance the security information for humans living around these lakes.
References
[2] O. A. H. Jones, N. Voulvoulis, J. N. Lester, Human Pharmaceuticals in Wastewater Treatment Processes, Crit. Rev. Environ. Sci. Technol., Vol. 35, No. 4, 2005, pp. 401-427.
[3] O. Cardoso, J. M. Porcher, W. Sanchez, Factory-discharged Pharmaceuticals Could Be a Relevant Source of Aquatic Environment Contamination: Review of Evidence and Need for Knowledge, Chemosphere, Vol. 115, No. 1, 2014, pp. 20-30.
[4] S. Castiglioni, R. Bagnati, R. Fanelli, F. Pomati, D. Calamari, E. Zuccato, Removal of Pharmaceuticals in Sewage Treatment Plants in Italy, Environ. Sci. Technol., Vol. 40, No. 1, 2006, pp. 357-363.
[5] B. K. Hordern, R. M. Dinsdale, A. J. Guwy, The Removal of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs During Wastewater Treatment and its Impact on the Quality of Receiving Waters, Water Res., Vol. 43, No. 2, Feb. 2009, pp. 363-380.
[6] R. Rosal, A. Rodríguez, J. A. P. Melón, A. Petre, E. G. Calvo, M. J. Gómez, A. Agüera, A. R. F. Alba, Occurrence of Emerging Pollutants in Urban Wastewater and Their Removal Through Biological Treatment Followed by Ozonation, Water Res., Vol. 44, No. 2, 2010, pp. 578-588.
[7] N. M. Vieno, T. Tuhkanen, L. Kronberg, Analysis of Neutral and Basic Pharmaceuticals in Sewage Treatment Plants and in Recipient Rivers Using Solid Phase Extraction and Liquid Chromatography-Tandem Mass Spectrometry Detection, J. Chromatogr. A, Vol. 1134, No. 1-2, 2006, pp. 101-111.
[8] W. J. Sim, J. W. Lee, J. E. Oh, Occurrence and Fate of Pharmaceuticals in Wastewater Treatment Plants and Rivers in Korea, Environ. Pollut., Vol. 158, No. 5, 2010, pp. 1938-1947.
[9] M. J. G. Galán, M. S. D. Cruz, D. Barceló, “Occurrence of Sulfonamide Residues Along the Ebro River Basin, Removal in Wastewater Treatment Plants and Environmental Impact Assessment., Environ. Int., Vol. 37, No. 2, 2011, pp. 462-473.
[10] A. Joss, E. Keller, A. Alder, A. Göbel, C. S. McArdell, T. Ternes, H. Siegrist, Removal of Pharmaceuticals and Fragrances in Biological Wastewater Treatment, Water Res., Vol. 39, No. 14, 2005, pp. 3139-3152.
[11] N. Vieno, T. Tuhkanen, L. Kronberg, Elimination of Pharmaceuticals in Sewage Treatment Plants in Finland, Water Res., Vol. 41, No. 5, 2007, pp. 1001-1012.
[12] J. L. Santos, I. Aparicio, M. Callejón, E. Alonso, Occurrence of Pharmaceutically Active Compounds During 1-Year Period in Wastewaters From Four Wastewater Treatment Plants in Seville (Spain), J. Hazard. Mater., Vol. 164,
No. 2-3, 2009, pp. 1509-1516.
[13] V. N. Binh, N. Dang, N. T. K. Anh, L. X. Ky, P. K. Thai, Antibiotics in the Aquatic Environment of Vietnam: Sources, Concentrations, Risk and Control Strategy, Chemosphere, Vol. 197, Apr. 2018, pp. 438-450.
[14] P. K. Thai, L. X. Ky, V. N. Binh, P. H. Nhung,
P. T. Nhan, N. Q. Hieu N, N. T. T. Dang, N. K. B. Tam, N. T. K. Anh, Occurrence of Antibiotic Residues and Antibiotic-Resistant Bacteria in Effluents of Pharmaceutical Manufacturers and Other Sources Around Hanoi, Vietnam, Sci. Total Environ., Vol. 645, 2018, pp. 393-400.
[15] D. W. Kolpin, E. T. Furlong, M. T. Meyer, E. M. Thurman, S. D. Zaugg, L. B. Barber, H. T. Buxton, Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance, Environ. Sci. Technol., Vol. 36, No. 6, 2002, pp. 1202-1211.
[16] W. Mao, H. Vu, Z. Xie, W. Chen, S. Tang, Systematic Review on Irrational Use of Medicines in China and Vietnam, PLoS One, Vol. 10, No. 3, 2015, pp. e0117710.
[17] Y. Hu, L. Li, B. Li, L. Peng, Y. Xu, X. Zhou, R. Li, K. Song, Spatial Variations and Ecological Risks Assessment of Pharmaceuticals and Personal Care Products (PPCPs) in Typical Lakes of Wuhan, China, Process Saf. Environ. Prot., Vol. 174, 2023, pp. 828-837.
[18] V. F. Fonseca, I. A. Duarte, B. Duarte, A. Freitas, A. S. V. Pouca, J. Barbosa, B. M. Gillanders,
P. R. Santos, Environmental Risk Assessment and Bioaccumulation of Pharmaceuticals in a Large Urbanized Estuary, Sci. Total Environ., Vol. 783, 2021, pp. 147021.
[19] P. M. Bui Van Hoi, Occurrence and Photo-Degradation of 9 Pharmaceutical Residues in Effluents of Wastewater Treatment Plants (WWTPs), Journal of Analytical Sciences, Vol. 20, No. 3, 2015, pp. 96-104.
[20] Y. Adomat, T. Grischek, Occurrence, Fate and Potential Risks of Pharmaceuticals and Personal Care Products (PPCPs) in Elbe River Water During Water Treatment in Dresden, Germany, Environ. Challenges, Vol. 15, 2024, pp. 100938.
[21] D. Kötke, J. Gandrass, Z. Xie, R. Ebinghaus, Prioritised Pharmaceuticals in German Estuaries and Coastal Waters: Occurrence and Environmental Risk Assessment, Environ. Pollut., Vol. 255, 2019, pp. 113161.
[22] S. Hanamoto, Y. Minami, S. S. T. Hnin, D. Yao, Localized Pollution of Veterinary Antibiotics in Watersheds Receiving Treated Effluents From Swine Farms, Sci. Total Environ., Vol. 902, 2023, pp. 166211.
[23] N. Da Le, A. Q. Hoang, T. T. H. Hoang, T. A. H. Nguyen, T. T. Duong, T. M. H. Pham, T. D. Nguyen, V. C. Hoang, T. X. B. Phung, H. T. Le, C. S. Tran, T. H. Dang, N. T. Vu, T. N. Nguyen,
T. P. Q. Le, Antibiotic and Antiparasitic Residues in Surface Water of Urban Rivers in the Red River Delta (Hanoi, Vietnam): Concentrations, Profiles, Source Estimation, and Risk Assessment, Environ. Sci. Pollut. Res., Vol. 28, No. 9, 2021, pp. 10622-10632.
[24] H. A. Duong, T. V. Phung, T. N. Nguyen, L. A. Phan Thi, H. V. Pham, Occurrence, Distribution, and Ecological Risk Assessment of Antibiotics in Selected Urban Lakes of Hanoi, Vietnam, J. Anal. Methods Chem., Vol. 2021, 2021, pp. 1-13.
[25] N. H. Tran, L. Hoang, L. D. Nghiem, N. M. H. Nguyen, H. H. Ngo, W. Guo, Q. T. Trinh, N. H. Mai, H. Chen, D. D. Nguyen, T. T. Ta, K. Y. H. Gin, Occurrence and Risk Assessment of Multiple Classes of Antibiotics in Urban Canals and Lakes In Hanoi, Vietnam, Sci. Total Environ., Vol. 692, 2019, pp. 157-174.
[26] T. H. Ngo, D. A. Van, H. Le Tran, N. Nakada, H. Tanaka, T. H. Huynh, Occurrence of Pharmaceutical and Personal Care Products in Cau River, Vietnam, Environ. Sci. Pollut. Res., Vol. 28, No. 10, 2021, pp. 12082-12091.
[27] M. D. Le, H. A. Duong, M. H. Nguyen, J. Sáiz, H. V. Pham, T. D. Mai, Screening Determination of Pharmaceutical Pollutants in Different Water Matrices Using Dual-Channel Capillary Electrophoresis Coupled With Contactless Conductivity Detection, Talanta, Vol. 160, 2016, pp. 512-520.
[28] M. Andrieu, A. Rico, T. M. Phu, D. T. T. Huong, N. T. Phuong, P. J. Van den Brink, Ecological Risk Assessment of the Antibiotic Enrofloxacin Applied to Pangasius Catfish Farms in the Mekong Delta, Vietnam, Chemosphere, Vol. 119, 2015, pp. 407-414.
[29] C. Nguyen Dang Giang, Z. Sebesvari, F. Renaud, I. Rosendahl, Q. Hoang Minh, W. Amelung, Occurrence and Dissipation of the Antibiotics Sulfamethoxazole, Sulfadiazine, Trimethoprim, and Enrofloxacin in the Mekong Delta, Vietnam, PLoS One, Vol. 10, No. 7, 2015.
[30] V. H. Bui, T. T. H. Pham, D. B. Chu, C. T. Vu, T. T. Nguyen, T. Q. M. Duong, T. T. Nguyen, T. T. Ta, V. T. Vu, T. H. Nguyen, A Simple SPE-UPLC-MS/MS Method for Determination of 9 Antibiotics in Surface Water, Vietnam J. Sci. Technol., Vol. 60, No. 6, 2022, pp. 1123-1133.
[31] T. M. H. Nguyen, N. Da Le, V. H. Bui, C. T. Vu, T. T. H. Hoang, T. X. B. Phung, E. R. Newall,
T. T. H. Dinh, T. H. Vu, T. T. Duong, T. D. Nguyen, T. M. H. Pham, T. P. Q. Le, Spatial Distribution and Ecological Risk of Pharmaceutical Residues in the Day River, Vietnam, Int. J. Environ. Anal. Chem., 2024, pp. 1-21.
[32] F. T. Peters, O. H. Drummer, F. Musshoff, Validation of New Methods, Forensic Sci. Int., Vol. 165, No. 2-3, 2007, pp. 216-224.
[33] P. Paíga, L. H. M. L. M. Santos, S. Ramos, S. Jorge, J. G. Silva, C. D. Matos, Presence of Pharmaceuticals in the Lis River (Portugal): Sources, Fate and Seasonal Variation, Sci. Total Environ., Vol. 573, 2016, pp. 164-177.
[34] C. Yan, Y. Yang, J. Zhou, M. Liu, M. Nie, H. Shi, L. Gu, Antibiotics in the Surface Water of the Yangtze Estuary: Occurrence, Distribution and Risk Assessment, Environ. Pollut., Vol. 175, 2013, pp. 22-29.
[35] Norman, Norman Ecotoxicology Database, 2024.
[36] D. W. Bekele, J. Fick, G. Tilahun, E. Dadebo, Z. Gebremariam, Pharmaceutical Pollution in an Ethiopian Rift Valley Lake Hawassa: Occurrences and Possible Ecological Risks, Environ. Challenges, Vol. 15, 2024, pp. 100901.
[37] N. H. Tran, T. Urase, T. T. Ta, A Preliminary Study on the Occurrence of Pharmaceutically Active Compounds in Hospital Wastewater and Surface Water in Hanoi, Vietnam, Clean - Soil, Air, Water, Vol. 42, No. 3, 2014, pp. 267-275.
[38] F. Nantaba, J. Wasswa, H. Kylin, W. U. Palm, H. Bouwman, K. Kümmerer, Occurrence, Distribution, and Ecotoxicological Risk Assessment of Selected Pharmaceutical Compounds in Water From Lake Victoria, Uganda, Chemosphere, Vol. 239, 2020, pp. 124642.
[39] P. Zhang, H. Zhou, K. Li, Occurrence of Pharmaceuticals and Personal Care Products, and Their Associated Environmental Risks in A Large Shallow Lake in North China, Environ. Geochem. Health, Vol. 40, No. 4, 2018, pp. 1525-1539.
[40] T. D. Beek, F. A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the Environment-Global Occurrences and Perspectives, Environ. Toxicol. Chem., Vol. 35, No. 4, 2016, pp. 823-835.
[41] C. Vilchèze, W. R. Jacobs, The Combination of Sulfamethoxazole, Trimethoprim, and Isoniazid or Rifampin is Bactericidal and Prevents the Emergence of Drug Resistance in Mycobacterium Tuberculosis, Antimicrob. Agents Chemother., Vol. 56, No. 10, 2012, pp. 5142-5148.
[42] A. Daneshvar, J. Svanfelt, L. Kronberg, M. Prévost, G. A. Weyhenmeyer, Seasonal Variations in the Occurrence and Fate of Basic and Neutral Pharmaceuticals in a Swedish River-Lake System, Chemosphere, Vol. 80, No. 3, 2010, pp. 301-309.
[43] J. Wu, D. Shi, S. Wang, X. Yang, H. Zhang, T. Zhang, L. Zheng, Y. Zhang, Derivation of Water Quality Criteria For Carbamazepine and Ecological Risk Assessment in the Nansi Lake Basin, Int. J. Environ. Res. Public Health,
Vol. 19, No. 17, 2022, pp. 10875.
[44] M. Jiang, L. Wang, R. Ji, Biotic and Abiotic Degradation of Four Cephalosporin Antibiotics in A Lake Surface Water and Sediment, Chemosphere, Vol. 80, No. 11, 2010, pp. 1399-1405.