Studying Nitrocellulose Decomposition Process in Nitrocellulose-Cellulose-Trinitrotoluene System
Main Article Content
Abstract
This study presents the results of determining the kinetic parameters of the decomposition process of system Nitrocellulose-Cellulose-Trinitrotoluene. The kinetic parameters were determined based on differential scanning calorimetry (DSC) data using the Kissinger and Ozawa methods of NC in the samples of NC, NC-Cellulose, NC-Trinitrotoluene dissolved in solution, molten NC-Trinitrotoluene, NC-Cellulose-Trinitrotoluene, NC-Cellulose-Trinitrotoluene-DPA, NC-Cellulose-Trinitrotoluene-Centralite No. 1, NC-Cellulose-Trinitrotoluene-Centralite No. 2. The degree of thermal decomposition of the samples of NC-Cellulose-Trinitrotoluene containing chemical stabilizers such as DPA, Centralite No. 1, Centralite No. 2 was evaluated by measuring the gas pressure over time of the decomposition products.
References
[2] G. R. Kurulkar, R. K. Syal, H. Singh, Combustible Cartridge Case Formulation and Evaluation, Journal of Energetic Materials, Vol. 14, No. 2, 1996, pp. 127-149, https://doi.org/ 10.1080/07370659608216061.
[3] P. V. Khuong, N. M. Tuong, H. T. Vu, The Results of a Survey on the Mechanical Properties, Energy Characteristics, and Qualitative Analysis of Materials on Combustible Cartridge Case, Journal of Military Science and Technology, No. 92, 2023, pp. 71-78, https://doi.org/ 10.54939/1859-1043.j.mst.92.2023.71-78.
[4] T. R. Bilalov, F. M. Gumerov, Extraction of Energy-Rich Components from Combustion Materials in an Environment of Pure and Modified Supercritical CO2, News of Higher Educational Institutions, Energy Problems, Vol. 19, No. 5-6, 2017, pp. 132-143.
[5] Yang, T. Mao, Shih, Ch. Wen, Hwang, C. Ching, Composition Optimization and Characterization of Combustible Cartridge Cases with Polyvinyl Acetate (PVAc) as a Binder, Materials Express, Vo. 12, No. 5, 2022, pp. 713-725, https://doi.org/10.1166/mex.2022.2192.
[6] A. Dey, J. Athar, Improvements in the Structural Integrity of Resin Based Combustible Cartridge Cases (CCC) at Elevated Temperatures, Central European, Journal of Energetic Materials, Vol. 12, No. 1, 2015, pp. 117-127.
[7] H. Jia, G. Lu, The Influence of Humidity on Burning Perfectibility of Molded Combustible Cartridge Case, Advanced Materials Research, Vol. 295-297, 2011, pp. 446-449.
[8] W. Yang W, J. Yang J, Y. Zhang, A Comparative Study of Combustible Cartridge Case Materials, Defence Technology, Vol. 13, 2017, pp.127-130, https://doi.org/10.1016/j.dt.2017.02.003.
[9] M. R. Sovizi, S. S. Hajimirsadeghi, B. Naderizadeh, Effect of Particle Size on Thermal Decomposition of Nitrocellulose, Journal of Hazardous Materials, Vol. 168, No. 2–3, 2009, pp. 1134-1139, https://doi.org/10.1016/j.jhazmat. 2009.02.146.
[10] M. F. Cherif, D. Trache, Fouad Benaliouche, Ahmed Fouzi Tarchoun, Salim Chelouche, Abderrahmane Mezroua, Organosolv Lignins as New Stabilizers for Cellulose Nitrate: Thermal Behavior and Stability Assessment, International Journal of Biological Macromolecules, Vol. 164, 2020, pp. 794-807,
https://doi.org/10.1016/j.ijbiomac.2020.07.024.
[11] Ozawa T., Kinetic Analysis of Derivative Curves in Thermal Analysis, J. Thermal Anal., Vol. 2, 1970, pp. 301-324.
[12] S. M. Mušanić, I. F. Houra, M. Sućeska, Applicability of Non-Isothermal DSC and Ozawa Method for Studying Kinetics of Double Base Propellant Decomposition, Journal of Energetic Materials, Vol. 7, No. 3, 2010, pp. 233-251.
[13] T. Rotariu, T. V. Tiganescu, S. R. Esanu, Constantin Enache, Radu Stefanoiu, Researches on the Efficiency of Diphenylamine Addition to Aged Nitrocellulose Propellants, Scientific Technical Review, Vol. 37, No. 1, 1987, pp. 9-13.
[14] N. Koga, Ozawa's Kinetic Method for Analyzing Thermoanalytical Curves: History and Theoretical Fundamentals, Journal of Thermal Analysis and Calorimetry, Vol. 113, 2013, pp. 1527-1541, https://doi.org/10.1007/s10973-012-2882-5.
[15] S. M. Pourmortazavi, S. G. Hosseini, M. R. Nasrabadi, S. S. Hajimirsadeghi, H. Momenian, Effect of Nitrate Content on Thermal Decomposition of Nitrocellulose, Journal of Hazardous Materials, Vol. 162, 2009, pp. 1141-1144.
[16] S. Bekhouche, D. Trache, H. Akbi, A. Abdelaziz, Ahmed Fouzi Tarchoun, Hassane Boudouh, Thermal Decomposition Behavior and Kinetic Study of Nitrocellulose in Presence of Ternary Nanothermites with Different Oxidizers, FirePhysChem, Vol. 3, 2023, pp. 208-216.
[17] L. Chen, S. Liu, X. Cao, J. Gao, Y. Wang, Y. Qin, Y. Zhang, J. Zhang, G. Jin, M. Wang, J. Liu, W. He, Fabrication of Nitrocellulose-Based Nanoenergetic Composites, Study on its Structure, Thermal Decomposition Kinetics, Mechanism, and Sensitivity, Nano Select, Vol. 2, 2021, pp. 2225-2236, https://doi.org/10.1002/nano.202100046.
[18] L. Yang, X. Shi, Z. Li, X. Duan, B. Wu, C. Pei, Effect of 3-Methyl-4-Nitro-Furoxan on Morphology, Thermal Stability, Rheological and Mechanical Properties of Nitrocellulose (NC)-Based Energetic Materials, FirePhysChem, Vol. 1, 2021, pp. 90-96.
[19] A. V. Kostochko, N. M. Lyapin, Z. T. Valishina, Stabilization of Cellulose Nitrate Powders: Curriculum, Russian Ministry of Education and Science, Kazan Nation University, Kazan: KNITU, 2013, pp. 184.
[20] A. V. Kostochko, B. M. Kaban, Gunpowder, Solid Rocket Fuels and their Properties: Physical and Chemical Properties of Gunpowder and Solid Rocket Fuels: Curriculum, Russian Ministry of Education and Science, Kazan Nation University, Kazan: KNITU, 2011, pp. 366.