Mechanistic Insights into Crystal Violet Degradation by Peroxymonocarbonate-Based Oxidation Systems
Main Article Content
Abstract
In this study, peroxymonocarbonate (PMC), formed directly from the reaction between H2O2 and HCO3‒, was applied to decolorize Crystal Violet (CV), a widely used dye in the textile industry. Experimental results showed that PMC can decolorize CV almost completely in 30 minutes, superior to the H2O2 or H2O2/Co2+ systems. The effects of reactant concentration, catalyst, pH, co-existing anions, and UV irradiation were systematically investigated and optimized. The results showed that at concentrations of 8 mM HCO3⁻, 20 mM H2O2, 1.7 µM Co2⁺, and pH 8.5 (inherent pH), under UV irradiation, the PMC system can completely mineralize organic substances and is not affected by anions. Experiments using ROS scavengers showed that the oxidizing agents generated in the PMC system play an important role in CV decolorization, in which the superoxide radical (O2•⁻) contributes more to the CV decolorization process compared to the carbonate radical (CO3•⁻), while the hydroxyl radical (•OH) and singlet oxygen (1O2) are almost negligible.
References
[2] S. J. Kwak, J. Park, Y. Sim, H. Choi, J. Cho, Y. M. Lee, Biodegradation of Crystal Violet by Newly Isolated Bacteria, PeerJ, Vol. 12, 2024, pp. e17442, https://doi.org/10.7717/PEERJ.17442/SUPP-3.
[3] X. Liu, J. Wang, Decolorization and Degradation of Crystal Violet Dye by Electron Beam Radiation: Performance, Degradation Pathways, and Synergetic Effect with Peroxymonosulfate, Environmental Pollution, Vol. 350, 2024, https://doi.org/10.1016/J.ENVPOL.2024.124037.
[4] M. M. Islam, A. R. Aidid, J. N. Mohshin, H. Mondal, S. Ganguli, A. K. Chakraborty, A Critical Review on Textile Dye-containing Wastewater: Ecotoxicity, Health Risks, and Remediation Strategies for Environmental Safety, Cleaner Chemical Engineering, Vol. 11, 2025, https://doi.org/10.1016/J.CLCE.2025.100165.
[5] R. A. Tohamy, S. S. Ali, F. Li, K. M. Okasha, Y. A. G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, A Critical Review on the Treatment of Dye-containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety, Ecotoxicol Environ Saf, Vol. 231, 2022, https://doi.org/10.1016/J.ECOENV.2021.113160.
[6] H. J. Fan, S. T. Huang, W. H. Chung, J. L. Jan, W. Y. Lin, C. C. Chen, Degradation Pathways of Crystal violet by Fenton and Fenton-like Systems: Condition optimization and Intermediate Separation and Identification, J. Hazard Mater, Vol. 171, 2009, pp. 1032-1044, https://doi.org/10.1016/j.jhazmat.2009.06.117.
[7] N. Ali, A. A. Khan, M. Wakeel, I. A. Khan, S. U. Din, S. A. Qaisrani, A. M. Khan, M. U. Hameed, Activation of Peroxymonosulfate by UV-254 nm Radiation for the Degradation of Crystal Violet, Water, Vol. 14, 2022,
https://doi.org/10.3390/W14213440.
[8] G. K. Parshetti, S. G. Parshetti, A. A. Telke, D. C. Kalyani, R. A. Doong, S. P. Govindwar, Biodegradation of Crystal Violet by Agrobacterium radiobacter, J. Environ Sci (China), Vol. 23, 2011, pp. 1384-1393, https://doi.org/10.1016/s1001-0742(10)60547-5.
[9] D. J. Cao, J. J. Wang, Q. Zhang, Y. Z. Wen, B. Dong, R. J. Liu, X. Yang, G. Geng, Biodegradation of Triphenylmethane Dye Crystal Violet by Cedecea Davisae, Spectrochim Acta a Mol Biomol Spectrosc, Vol. 210, 2019, pp. 9-13, https://doi.org/10.1016/j.saa.2018.11.004.
[10] H. Wu, M. M. Fan, C. F. Li, M. Peng, L. J. Sheng, Q. Pan, G. W. Song, Kinetic Studies on the Degradation of Crystal Violet by the Fenton Oxidation Process, Water Science and Technology, Vol. 62, 2010, pp. 1-7, https://doi.org/10.2166/WST.2010.170.
[11] F. A. Alshamsi, A. S. Albadwawi, M. M. Alnuaimi, M. A. Rauf, S. S. Ashraf, Comparative Efficiencies of the Degradation of Crystal Violet using UV/hydrogen Peroxide and Fenton’s Reagent, Dyes and Pigments, Vol. 74, 2007, pp. 283-287, https://doi.org/10.1016/j.dyepig.2006.02.016.
[12] M. Abdi, M. Balagabri, H. Karimi, H. Hossini, S. O. Rastegar, Degradation of Crystal Violet (CV) from Aqueous Solutions using Ozone, Peroxone, Electroperoxone, and Electrolysis Processes: A Comparison Study, Appl Water Sci, Vol. 10, 2020, https://doi.org/10.1007/S13201-020-01252-W/FIGURES/8.
[13] A. Mancuso, N. Blangetti, O. Sacco, F. S. Freyria, B. Bonelli, S. Esposito, D. Sannino, V. Vaiano, Photocatalytic Degradation of Crystal Violet Dye under Visible Light by Fe-Doped TiO2 Prepared by Reverse-Micelle Sol–Gel Method, Nanomaterials, Vol. 13, 2023, https://doi.org/10.3390/NANO13020270.
[14] M. Sifat, E. Shin, A. Schevon, H. Ramos, A. Pophali, H. J. Jung, G. Halada, Y. Meng, N. Olynik, D. J. Sprouster, T. Kim, Photocatalytic Degradation of Crystal Violet (CV) Dye over Metal Oxide (MOx) Catalysts, Catalysts, Vol. 14, 2024, https://doi.org/10.3390/CATAL14060377.
[15] N. A. U. Suarez, C. R. Caicedo, Á. D. G. Delgado, A. F. B. Solano, F. M. Martínez, Bicarbonate-Hydrogen Peroxide System for Treating Dyeing Wastewater: Degradation of Organic Pollutants and Color Removal, Toxics, Vol. 11, 2023, https://doi.org/10.3390/TOXICS11040366.
[16] K. Y. M. Bonilla, I. F. M. Quiroga, N. R. S. González, M. T. D. Arias, Bicarbonate-Activated Hydrogen Peroxide for an Azo Dye Degradation: Experimental Design, ChemEngineering, Vol. 7, 2023, https://doi.org/10.3390/chemengineering7050086.
[17] A. Xu, X. Li, H. Xiong, G. Yin, Efficient Degradation of Organic Pollutants in Aqueous Solution with Bicarbonate-activated Hydrogen Peroxide, Chemosphere, Vol. 82, 2011, pp. 1190-1195,
https://doi.org/10.1016/J.CHEMOSPHERE.2010.11.066.
[18] S. Zhao, H. Xi, Y. Zuo, Q. Wang, Z. Wang, Z. Yan, Bicarbonate-activated Hydrogen Peroxide and Efficient Decontamination of Toxic Sulfur Mustard and Nerve Gas Simulants, J. Hazard Mater, Vol. 344, 2018, pp. 136-145, https://doi.org/10.1016/J.JHAZMAT.2017.09.055.
[19] H. Pan, Y. Gao, N. Li, Y. Zhou, Q. Lin, J. Jiang, Recent Advances in Bicarbonate-activated Hydrogen Peroxide System for Water Treatment, Chemical Engineering Journal, Vol. 408, 2021, https://doi.org/10.1016/j.cej.2020.127332.
[20] E. V. B. Albert, H. Yao, D. E. Denevan, D. E. Richardson, Kinetics and Mechanism of Peroxymonocarbonate Formation, Inorg Chem, Vol. 49, 2010, pp. 11287-11296, https://doi.org/10.1021/ic1007389.
[21] T. B. V. Nguyen, B. N. Nguyen, T. H. Nguyen, N. D. Vu, Study on the Formation and Decomposition of Peroxymonocarbonate (HCO4-) in Aqueous Solution, Journal of Analytical Sciences, Vol. 26, No. 3A, 2021, pp. 117-120 (in Vietnamese).
[22] D. E. Richardson, H. Yao, K. M. Frank, D. A. Bennett, Equilibria, Kinetics, and Mechanism in the Bicarbonate Activation of Hydrogen Peroxide: Oxidation of Sulfides by Peroxymonocarbonate, J Am Chem Soc, Vol. 122, 2000, pp. 1729-1739, https://doi.org/10.1021/ja9927467.
[23] S. B. Ali, O. A. Adekunle, F. Y. Usman, M. W. Jibrin, A. A. Mindia, Kinetic and Mechanisms of Decolorization of Crystal Violet by Cyanide ion, in Aqueous Acidic Medium, Chem Res J, Vol. 4, No. 4, 2019, pp. 84-89,
https://chemrj.org/download/vol-4-iss-4-2019/chemrj-2019-04-04-84-94.pdf.
[24] N. Salahudeen, A. A. Rasheed, Kinetics and Thermodynamics of Hydrolysis of Crystal Violet at Ambient and Below Ambient Temperatures, Sci Rep, Vol. 10, 2020, https://doi.org/10.1038/s41598-020-78937-4.
[25] T. B. V. Nguyen, B. N. Nguyen, N. D. Vu, P. H. Ho, T. H. Nguyen, Degradation of Reactive Blue 19 (RB19) by a Green Process Based on Peroxymonocarbonate Oxidation System, J. Anal Methods Chem, Vol. 2021, 2021, https://doi.org/10.1155/2021/6696600.
[26] N. T. Hanh, P. T. Huyen, N. H. Thu, N. B. Ngan, V. N. Duy, N. T. B. Viet, Study on Catalytic Activity of Co(II) in Rhodamine B Decolorization by Peroxymonocarbonate in Aqueous Solution, Vietnam Journal of Chemistry, Vol. 60, 2022, pp. 96-102, https://doi.org/10.1002/VJCH.202200089.
[27] V. T. Tinh, N. T. B. Viet, Evaluation of the Role of Reactive Oxygen Species in PMC-based Oxidation System for RB21 Dye Degradation, Journal of Science Natural Science, Vol. 69, No. 3, 2024, pp. 96-104, https://doi.org/10.18173/2354-1059.2024-0039.
[28] Y. Li, L. Li, Z.X. Chen, J. Zhang, L. Gong, Y. X. Wang, H. Q. Zhao, Y. Mu, Carbonate-activated Hydrogen Peroxide Oxidation Process for Azo Dye Decolorization: Process, Kinetics, and Mechanisms, Chemosphere, Vol. 192, 2018,
pp. 372-378, https://doi.org/10.1016/j.chemosphere.2017.10.126.
[29] T. Zhao, P. Li, C. Tai, J. She, Y. Yin, Y. Qi, G. Zhang, Efficient Decolorization of Typical Azo Dyes using Low-frequency Ultrasound in Presence of Carbonate and Hydrogen Peroxide, J. Hazard Mater, Vol. 346, 2018, pp. 42-51, https://doi.org/10.1016/J.JHAZMAT.2017.12.009.