Lương Duy Thành, Rudolf Sprik

Main Article Content

Abstract

The zeta potential of a solid-liquid interface in porous media is an important surface characterization quantity for geophysical applications or environmental applications, for example. The zeta potential in porous media is normally measured by some techniques such as streaming potential, streaming current. In this work, we use electroosmosis to measure the zeta potential for consolidated porous samples including natural and artificial rocks saturated with NaCl solutions. The measurements show that the values of the zeta potential deduced from our electroosmosis measurements are always smaller than those of the corresponding samples deduced from the reliable streaming potential measurements in literature, in particular for the low permeability samples. The reason may be that the samples are not fully saturated by liquid (in particular for low permeability samples) or the degradation of electrodes happens. The result suggests that the electroosmosis measurements are not a promising method to determine the zeta potential in porous media.

Keywords: Electroosmosis, streaming potential, zeta potential, porous media.

References

[1] J. Lyklema, Fundamentals of Interface and Colloid Science, Academic Press, 1995.
[2] B. Wurmstich, F. D. Morgan, Geophysics 59 (1994) 46–56.
[3] T. Ishido, J. Pritchett, Journal of Geophysical Research 104 (1999) 15247.
[4] L. Jouniaux, J. Pozzi, J. Berthier, P. Masse, Journal of Geophysical Research 104 (1999) 29293-29309.
[5] F. Fagerlund, G. Heinson, Environmental Geology 43 (2003).
[6] K. Titov, A. Revil, P. Konosavsky, S. Straface, S. Troisi, Geophysical Journal International 162 (2005) 641–650.
[7] J. H. Saunders, M. D. Jackson, C. C. Pain, Geophysics 73 (2008) 165– 180.
[8] K. Aizawa, Y. Ogawa, T. Ishido, Journal of Geophysical Research 114 (2009).
[9] R. F. Corwin, D. B. Hoovert, Geophysics 44 (1979) 226–245.
[10] F. D. Morgan, E. R. Williams, T. R. Madden, Journal of Geophysical Research 94 (1989) 12.449–12.461.
[11] A. Revil, P. A. Pezard, Geophysical Research Letters 25 (1998) 3197– 3200.
[12] G. Saracco, P. Labazuy, F. Moreau, Geophysical Research Letters 31 (2004).
[13] A. Finizola, N. Lenat, O. Macedo, D. Ramos, J. Thouret, F. Sortino, Journal of Volcanology and Geothermal Research 135 (2004) 343–360.
[14] G. Mauri, G. Williams-Jones, G. Saracco, Journal of Volcanology and Geothermal Research 191 (2010).
[15] H. Mizutani, T. Ishido, T. Yokokura, S. Ohnishi, Geophys. Res. Lett. 3 (1976).
[16] J. Pozzi, L. Jouniaux, C. R. Acad. Sci., Serie II 318 (1994) 7377.
[17] M. Trique, P. Richon, F. Perrier, J. P. Avouac, J. C. Sabroux, Nature (1999) 137–141.
[18] T. Paillat, E. Moreau, P.O.Grimaud, G. Touchard, IEEE Transactions on Dielectrics and Electrical Insulation 7 (2000) 693–704.
[19] C. Cameselle, K. R. Reddy, Electrochimica Acta 86 (2012) 10–22.
[20] C. Cameselle, S. Gouveia, D. E. Akretche, B. Belhadj, Organic Pollutants - Monitoring, Risk and Treatment, InTech, 2013.
[21] R. J. Hunter, Foundations of Colloid Science, Oxford University Press, 1986.
[22] H. M. Jacob, B. Subirm, Electrokinetic and Colloid Transport Phenomena, Wiley-Interscience, 2006.
[23] K. E. Butler, Seismoelectric effects of electrokinetic origin, PhD thesis, University of British Columbia, 1996.
[24] H. Hase, T. Ishido, S. Takakura, T. Hashimoto, K. Sato, Y. Tanaka, Geophysical Research Letters 30 (2003) 3197–3200.
[25] P. Glover, M. Jackson, The Leading Edge 29 (2010) 724–728.
[26] R. J. Hunter, Zeta Potential in Colloid Science, Academic, New York, 1981.
[27] O. Stern, Z. Elektrochem 30 (1924) 508–516.
[28] T. Ishido, H. Mizutani, Journal of Geophysical Research 86 (1981) 1763-1775.
[29] F. Reuss, Memoires de la Societe Imperiale de Naturalistes de Moscou 2 (1809) 327–336.
[30] S. Yao, J. G. Santiago, J. Colloid Interface Sci 268 (2003) 133–142.
[31] C. Rice, R. Whitehead, J. Phys. Chem. 69 (1965) 4017–4024.
[32] D.T. Luong, R. Sprik, International Journal of Geophysics Article ID 471819 (2014).
[33] E. Bemer, O. Vincke, P. Longuemare, Oil and Gas Science and Technology 59 (2004)405-426.
[34] P. Churcher, P. French, J. Shaw, L. Schramm, SPE International Symposium (1991).
[35] A. Pagoulatos, Evaluation of multistage Triaxial Testing on Berea sandstone, Degree of Master of Science, Oklahoma, 2004.
[36] D. T. Luong, R. Sprik, ISRN Geophysics Article ID 496352 (2013).
[37] D. R. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2004.
[38] D. H. Gray, J. K. Mitchell, Journal of the Soil Mechanics and foundations Division 93 (1967) 209–236.
[39] P. W. J. Glover, E. Walker, Geophysics 74 (2009) E17–E19.
[40] M. Z. Jaafar, J. Vinogradov, M. D. Jackson, Geophysical Research Letters 36 (2009) doi: 10.1029/2009GL040549.
[41] J. Vinogradov, M. Z. Jaafar, M. D. Jackson, Journal of Geophysical Research 115 (2010) doi: 10.1029/2010JB007593.
[42] D. T. Luong, R. Sprik, Submitted to Geophysical Prospecting (2015).
[43] A. Revil, P. A. Pezard, P. W. J. Glover, Journal of Geophysical Research 104(1999)20021-20031.
[44] A. Revil, H. Schwaeger, L. M. Cathles, P. D. Manhardt, Journal of Geophysical Research 104 (1999) 20033–20048.
[45] Y. Yi, Study on the degradation of carbon materials for electrocatalytic applications, Ph.D. thesis, Technical University of Berlin, 2014.