Combined Use of Landsat 8 and Sentinel 2 Images for Enhanced Spatial Resolution of Land Surface Temperature
Main Article Content
Abstract
Abstract: Land surface temperature is one of the most important factors in studying urban heat island, monitoring forest fire and coal fire as well as input parameters for climate models. Ground-based observations reflect only thermal condition of local area around the stations and in fact cannot establish the number of meteorological stations with expected density due to the high cost. Remote sensing technology with advantages such as wide area coverage and short revisiting interval has been used effectively in the study of land surface temperature distribution. However, due to the spatial resolution of thermal infrared band is low, land surface temperature calculated from satellite images, such as Landsat and Aster is not applicable to small-scales area effectively. This paper presents the results of a study of combining multi-resolution remote sensing data, including Landsat 8 and Sentiel 2A satellite imagery, to enhance the spatial resolution of land surface temperature. The results show that, in the case of combining Sentinel 2 and Landsat 8 images, the spatial resolution of land surface temperature is increased to 10m, compared to 30m in the case of using only Landsat 8 data. For the two experimental areas, comparison of the lowest and highest land surface temperature as well as the 10 random test points showed that, the difference between land surface temperatures in the case of combining Landsat 8 and Sentinel 2 and in the case of using only Landsat 8 images are negligible.
Keywords: Remote sensing, land surface temperature, spatial resolution, Landsat 8, Sentinel 2.
References
[1] Alipour T., Sarajian M., Esmaseily A. (2004). Land surface temperature estimation from thermal band of LANDSAT sensor, case study: Alashtar city. The international archives of the Photogrammetry, Remote sensing and spatial information sciences, Vol. XXXVIII-4/C7.
[2] Balling R.C., Brazel S.W., 1988. High resolution surface temperature patterns in a complex urban Terrain, Photogrammetric Engineering and Remote Sensing, Vol. 54(9), 1289 – 1293.
[3] Cueto G., Ostos J., Toudert D., Martinez T. (2007). Detection of the urban heat island in Mexicali and its relationship with land use, Atmosfera 20(2),
pp. 111 – 131.
[4] Hyung Moo Kim, Beob Kyun Kim, Kang Soo You (2005). A statistic correlation analysis algorithm between land surface temperature and vegetation index. International journal of information processing systems, Vol. 1, No. 1, 102 – 106.
[5] Kumar S., Bhaskar P., Padmakumari K. (2012). Estimation of land surface temperature to study urban heat island effect using LANDSAT ETM+ image. International journal of Engineering Science and technology, Vol. 4, No. 2, pp. 771 – 778.
[6] Maltick J., Kant Y., Bharath D. (2008). Estimation of land surface temperature over Delhi using LANDSAT-7 ETM+. Journal Ind. Geophys. Union, Vol. 12, No. 3, pp. 131 – 140.
[7] Trịnh Lê Hùng (2014). Nghiên cứu sự phân bố nhiệt độ bề mặt bằng dữ liệu ảnh vệ tinh đa phổ LANDSAT. Tạp chí Các khoa học về Trái đất, Tập 36, số 01, trang 82 – 89.
[8] Yuan F., Bauer M. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in LANDSAT imagery. Remote sensing of Environment 106:375 – 386.
[9] Anandababu D., Purushothaman B.M., Suresh B.S. (2018). Estimation of land surface temperature using Landsat 8 data, International Journal of Advance Research, Ideas and Innovations in Technology, Vol.4(2), 177 – 186.
[10] Bakar S., Pradhan B., Lay U., Abdullahi S. (2016). Spatial assessment of land surface temperature and land use/land cover in Langkawi Island, IOP Conferece Series: Earth and Environmental Science 37, doi:10.1088/1755-1315/37/1/012064.
[11] Boori M.S., Vozenilek V., Balter H., Choudhary K. (2015). Land surface temperature with land cover classes in Aster and Landsat data, Journal of Remote Sensing & GIS 4:138. doi:10.4172/2169-0049.1000138.
[12] Guha S., Govil H., Dey A., Gill N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, European Journal of Remote Sensing, Vol. 51(1).
[13] Pal S, Ziaul S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre, The Egyptian Journal of Remote Sensing and Space Science, Vol. 20(1), 125 – 145.
[14] Bùi Quang Thành (2015). Urban heat island analysis in Ha Noi: examining the relatioship between land surface temperature and impervious surface, Hội thảo Ứng dụng GIS toàn quốc 2015, trang 674 – 677.
[15] Nguyễn Đức Thuận, Phạm Văn Vân (2016). Ứng dụng công nghệ viễn thám và hệ thống thông tin địa lý nghiên cứu thay đổi nhiệt độ bề mặt 12 quận nội thành, thành phố Hà Nội giai đoạn 2005 – 2015, Tạp chí Khoa học Nông nghiệp Việt Nam, tập 14, số 8, trang 1219 – 1230.
[16] Trần Thị Vân, Hoàng Thái Lan, Lê Văn Trung (2009). Phương pháp viễn thám nhiệt trong nghiên cứu phân bố nhiệt độ bề mặt đô thị. Tạp chí Các khoa học về Trái đất, Tập 31(2), tr. 168 – 177.
[17] Prakash A., Gupta R.P. (1999). Surface fires in Jharia Coalfield, India – their distribution and estimation of area and temperature from TM data, International Journal of Remote Sensing. V. 20.
P. 1935–1946.
[18] Mishra R, Roy P., Pandey J., Khalkho A., Singh V. (2014). Study of coal fire dynamics of Jharia coalfield using satellite data, International Journal of Geomatic and Geoscience, Vol.4(3), 477–484.
[19] Trinh L.H., Zabloskii V. (2017). The application of Landsat multitemporal thermal infrared data to identify coal fire in the Khanh Hoa coal mine, Thai Nguyen province, Vietnam, Izvestiya, Atmospheric and Oceanic Physics, Vol.53(9), 1081 – 1087, doi: 10.1134/S0001433817090183.
[20] Sandholt I., Rasmussen K., Anderson J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of the surface moisture status, Remote Sensing of Environment, Vol. 79, pp. 213–224.
[21] Bao Y., Gama G., Gang B., Alatengtuya Y., Husiletu Y. (2013). Monitoring of drought disaster in Xilin Guole grassland using TVDI model, Taylor & Francis group, London, ISBN 978-1-138-00019-3, pp. 299 – 310.
[22] Landsat 8 (L8) Data Users Handbook, Availabe in https://landsat.usgs.gov/landsat-8-data-users-handbook, 07 Septamber 2018.
[23] Valor E., Caselles V. (1996). Mapping land surface emissivity from NDVI. Application to European African and South American areas, Remote sensing of Environment, 57, pp. 167 – 184.
[24] Van de Griend A.A., Owen M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface, International journal of remote sensing 14, pp. 1119 – 1131.
[25] Đặng Như Duẩn, Đào Ngọc Long, Trịnh Lê Hùng (2017). Nghiên cứu sự thay đổi nhiệt độ bề mặt khu vực thành phố Thanh Hóa giai đoạn 2000 – 2017 từ tư liệu ảnh hồng ngoại nhiệt Landsat, Tạp chí Khoa học Đo đạc và Bản đồ, số 6, trang 26 – 32.
[26] Chavez P.S. (1996). Image-based atmospheric corrections–revisited and improved, Photogrammetric Engineering and Remote Sensing 62(9), 1025-1036.
References
[2] Balling R.C., Brazel S.W., 1988. High resolution surface temperature patterns in a complex urban Terrain, Photogrammetric Engineering and Remote Sensing, Vol. 54(9), 1289 – 1293.
[3] Cueto G., Ostos J., Toudert D., Martinez T. (2007). Detection of the urban heat island in Mexicali and its relationship with land use, Atmosfera 20(2),
pp. 111 – 131.
[4] Hyung Moo Kim, Beob Kyun Kim, Kang Soo You (2005). A statistic correlation analysis algorithm between land surface temperature and vegetation index. International journal of information processing systems, Vol. 1, No. 1, 102 – 106.
[5] Kumar S., Bhaskar P., Padmakumari K. (2012). Estimation of land surface temperature to study urban heat island effect using LANDSAT ETM+ image. International journal of Engineering Science and technology, Vol. 4, No. 2, pp. 771 – 778.
[6] Maltick J., Kant Y., Bharath D. (2008). Estimation of land surface temperature over Delhi using LANDSAT-7 ETM+. Journal Ind. Geophys. Union, Vol. 12, No. 3, pp. 131 – 140.
[7] Trịnh Lê Hùng (2014). Nghiên cứu sự phân bố nhiệt độ bề mặt bằng dữ liệu ảnh vệ tinh đa phổ LANDSAT. Tạp chí Các khoa học về Trái đất, Tập 36, số 01, trang 82 – 89.
[8] Yuan F., Bauer M. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in LANDSAT imagery. Remote sensing of Environment 106:375 – 386.
[9] Anandababu D., Purushothaman B.M., Suresh B.S. (2018). Estimation of land surface temperature using Landsat 8 data, International Journal of Advance Research, Ideas and Innovations in Technology, Vol.4(2), 177 – 186.
[10] Bakar S., Pradhan B., Lay U., Abdullahi S. (2016). Spatial assessment of land surface temperature and land use/land cover in Langkawi Island, IOP Conferece Series: Earth and Environmental Science 37, doi:10.1088/1755-1315/37/1/012064.
[11] Boori M.S., Vozenilek V., Balter H., Choudhary K. (2015). Land surface temperature with land cover classes in Aster and Landsat data, Journal of Remote Sensing & GIS 4:138. doi:10.4172/2169-0049.1000138.
[12] Guha S., Govil H., Dey A., Gill N. (2018). Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy, European Journal of Remote Sensing, Vol. 51(1).
[13] Pal S, Ziaul S. (2017). Detection of land use and land cover change and land surface temperature in English Bazar urban centre, The Egyptian Journal of Remote Sensing and Space Science, Vol. 20(1), 125 – 145.
[14] Bùi Quang Thành (2015). Urban heat island analysis in Ha Noi: examining the relatioship between land surface temperature and impervious surface, Hội thảo Ứng dụng GIS toàn quốc 2015, trang 674 – 677.
[15] Nguyễn Đức Thuận, Phạm Văn Vân (2016). Ứng dụng công nghệ viễn thám và hệ thống thông tin địa lý nghiên cứu thay đổi nhiệt độ bề mặt 12 quận nội thành, thành phố Hà Nội giai đoạn 2005 – 2015, Tạp chí Khoa học Nông nghiệp Việt Nam, tập 14, số 8, trang 1219 – 1230.
[16] Trần Thị Vân, Hoàng Thái Lan, Lê Văn Trung (2009). Phương pháp viễn thám nhiệt trong nghiên cứu phân bố nhiệt độ bề mặt đô thị. Tạp chí Các khoa học về Trái đất, Tập 31(2), tr. 168 – 177.
[17] Prakash A., Gupta R.P. (1999). Surface fires in Jharia Coalfield, India – their distribution and estimation of area and temperature from TM data, International Journal of Remote Sensing. V. 20.
P. 1935–1946.
[18] Mishra R, Roy P., Pandey J., Khalkho A., Singh V. (2014). Study of coal fire dynamics of Jharia coalfield using satellite data, International Journal of Geomatic and Geoscience, Vol.4(3), 477–484.
[19] Trinh L.H., Zabloskii V. (2017). The application of Landsat multitemporal thermal infrared data to identify coal fire in the Khanh Hoa coal mine, Thai Nguyen province, Vietnam, Izvestiya, Atmospheric and Oceanic Physics, Vol.53(9), 1081 – 1087, doi: 10.1134/S0001433817090183.
[20] Sandholt I., Rasmussen K., Anderson J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of the surface moisture status, Remote Sensing of Environment, Vol. 79, pp. 213–224.
[21] Bao Y., Gama G., Gang B., Alatengtuya Y., Husiletu Y. (2013). Monitoring of drought disaster in Xilin Guole grassland using TVDI model, Taylor & Francis group, London, ISBN 978-1-138-00019-3, pp. 299 – 310.
[22] Landsat 8 (L8) Data Users Handbook, Availabe in https://landsat.usgs.gov/landsat-8-data-users-handbook, 07 Septamber 2018.
[23] Valor E., Caselles V. (1996). Mapping land surface emissivity from NDVI. Application to European African and South American areas, Remote sensing of Environment, 57, pp. 167 – 184.
[24] Van de Griend A.A., Owen M. (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surface, International journal of remote sensing 14, pp. 1119 – 1131.
[25] Đặng Như Duẩn, Đào Ngọc Long, Trịnh Lê Hùng (2017). Nghiên cứu sự thay đổi nhiệt độ bề mặt khu vực thành phố Thanh Hóa giai đoạn 2000 – 2017 từ tư liệu ảnh hồng ngoại nhiệt Landsat, Tạp chí Khoa học Đo đạc và Bản đồ, số 6, trang 26 – 32.
[26] Chavez P.S. (1996). Image-based atmospheric corrections–revisited and improved, Photogrammetric Engineering and Remote Sensing 62(9), 1025-1036.