An Experiment for Assimilating Different Type of Data Observations in Forecasting Heavy Rainfall over Central Highlands Region Due to the Impact of Hurricane Damrey
Main Article Content
Abstract
This study investigates and assesses the impact of assimilating data types (observed data surface, sounding, and satellite-derived atmospheric motion vectors – AMVs) for the Weather Research and Forecasting (WRF) in forecasting heavy rainfall over Central Highlands region, due to the impact of hurricane Damrey. The WRF model combined with the Gridpoint Statistical Interpolation (GSI) system, was started running at 12Z 03/11/2017, and 84h forecasts in advance, with two kinds for running assimilation "cold start" and "warm start", and with the three-dimensional variational data assimilation (3D-Var) method. The results showed that assimilated cases have improved forecasting about spatial distribution and amount of rainfall at a 24-hour lead time, in which, the "warm start" for better forecasting. Notably, the assimilation of AMVs data with the "warm start" run has improved forecasting quality of heavy rainfall, the POD, FAR, and CSI indicators are the best at the 24-hour lead time, for rainfall thresholds greater than 80mm.
References
[2] E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130-141. https://doi.org/ 10. 1175/1520-0469(1963) 020<0130:DNF>2.0.CO;2.
[3] P. Courtier, E. Andersson, W. Heckley, D. Vasiljevic, M. Hamrud, A. Hollingsworth, F. Rabier, M. Fisher, and J. Pailleux, The ECMWF implementation of three‐dimensional variational assimilation (3D‐Var). I: Formulation, Quarterly Journal of the Royal Meteorological Society 124 (1998) 1783-1807.
[4] F. Rabier, H. Järvinen, E. Klinker, J.F. Mahfouf, and A. Simmons, The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics, Q.J.R. Meteorol. Soc. 126 (2000) 1143-1170.
[5] V. Mazzarella, I. Maiello, V. Capozzi, G. Budillon, and R. Ferretti, Comparison between 3D-Var and 4D-Var data assimilation methods for the simulation of a heavy rainfall case in central Italy, Adv. Sci. Res. 14 (2017) 271-278. https://doi.org/ 10.5194/asr-14-271-2017.
[6] W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.Y. Huang, W. Wang, and J.G. Powers, A description of the Advanced Research WRF Version 3, NCAR Technical Note NCAR/TN-475CSTR (2008).
[7] D. Barker, X.Y. Huang, Z. Liu, T. Auligné, X. Zhang, S. Rugg, R. Ajjaji, A. Bourgeois, J. Bray, Y. Chen, and M. Demirtas, The weather research and forecasting model's community variational/ ensemble data assimilation system: WRFDA, Bull. Amer. Meteor. Soc. 93 (2012) 831-843.
[8] M. Hu, G. Ge, H. Shao, D. Stark, K. Newman, C. Zhou, J. Beck, and X. Zhang, Grid-point Statistical Interpolation (GSI) User’s Guide v3.6, Developmental Testbed Center (2017).
[9] P.Q. Nam, M.V. Khiem, N.Q. Trung, V.V. Thang, An experiment with GSI system for data assimilation to improve quantitative rainfall forecast over southern Vietnam region (in Vietnamese), Vietnam Journal of Hydro-meteorology 698 (2019) 1-10.
[10] C. Kidd, V. Levizzani, & P. Bauer, A review of satellite meteorology and climatology at the start of the twenty-first century, Progress in Physical Geography 33 (2009) 474-489.
[11] J. Yang, K. Duan, J. Wu, X. Qin, P. Shi, H. Liu, X. Xie, X. Zhang, and J. Sun, Effect of data assimilation using WRF-3DVAR for heavy rain prediction on the northeastern edge of the Tibetan Plateau, Advances in Meteorology (2015). https:// doi.org/10.1155/2015/294589.
[12] M. Forsythe, Atmospheric motion vectors: past, present and future, In ECMWF Annual Seminar (2007).
[13] D.S. Wilks, Statistical methods in the atmospheric sciences, Academic press, 2011.