A study on the Sensitivity of Parameterizations for Regional Climate models in the Simulation of Tropical Cyclones over Western Pacific Ocean and East Sea
Main Article Content
Abstract
This study investigates the sensitivity of physical parameterization schemes in two regional dynamic models clWRF (the climate Weather Research and Forecasting) and RegCM (the Regional Climate Model) in the simulation of tropical cyclones (TCs) over Western Pacific Ocean and East Sea. The experiments include 12-cases for clWRF model and 6-cases for RegCM model were conducted to run the simulation, with the same domain parameters, resolution 25 km. Results show that the clWRF can simulate TCs well with the Betts-Miller-Janjic convection scheme and WSM6 microphysics, in which convection schemes are more influential, and the RegCM is with the Kain-Fritsch convection scheme and Zeng oceanic flux. Regarding the number of TCs simulation, most of them are higher than observed and CFSnl (Climate Forecast System analysis) data, therein the RegCM is higher than the clWRF.
References
[2] T.E. LaRow, L. Stefanova, D.W. Shin, S. Cocke, Seasonal Atlantic tropical cyclone hindcasting/ forecasting using two sea surface temperature datasets, Geophys. Res. Lett., 37 (2010). https:// doi.org/10.1029/2009GL041459.
[3] M. Zhao, I.M. Held, G.A. Vecchi, Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies, Mon. Wea. Rev., 138 (2010) 3858-3868. https://doi.org/10.1175/2010MWR3366.1.
[4] J.H. Chen, S.J. Lin, The remarkable predictability of inter‐annual variability of Atlantic hurricanes during the past decade, Geophys. Res. Lett., 38 (2011). https://doi.org/10.1029/2011GL047629.
[5] J.H. Chen, S.J. Lin, Seasonal predictions of tropical cyclones using a 25-km-resolution general circulation model, J. Climate, 26 (2013) 380-398. https://doi.org/10.1175/JCLI-D-12-00061.1.
[6] H. Murakami, G.A. Vecchi, G. Villarini, T.L. Delworth, R. Gudgel, S. Underwood, X. Yang, W. Zhang, S. Lin, Seasonal forecasts of major hurricanes and landfalling tropical cyclones using a high-resolution GFDL coupled climate model, J. Climate, 29 (2016) 7977-7989. https://doi.org/10. 1175/JCLI-D-16-0233.1.
[7] R. Zhan, Y. Wang, and M. Ying, Seasonal forecasts of tropical cyclone activity over the western North Pacific: A review, Tropical Cyclone Research and Review, 1 (2012) 307-324.
[8] T.T. Warner, Numerical weather and climate prediction, Cambridge University Press, 2011.
[9] R.K. Smith, The role of cumulus convection in hurricanes and its representation in hurricane models, Rev, Geophys., 38 (2000) 465-489. https:// doi.org/10.1029/1999RG000080.
[10] B.M. Sanderson, C. Piani, W. Ingram, D. Stone, and M. Allen, Towards constraining climate sensitivity by linear analysis of feedback patterns in thousands of perturbed-physics GCM simulations, Clim. Dyn., 30 (2008) 175-190. https: //doi.org/10.1007/s00382-007-0280-7.
[11] M. Zhao, I.M. Held, S.J. Lin, Some counterintuitive dependencies of tropical cyclone frequency on parameters in a GCM. J. Atmos. Sci., 69 (2012) 2272-2283. https://doi.org/10.1175/JAS-D-11-0238.1.
[12] T. LaRow, Y.K. Lim, D. Shin, E. Chassignet, S. Cocke, Atlantic basin seasonal hurricane simulations, J. Clim., 21 (2008) 3191-3206. https://doi.org/10.11 75/2007JCLI2036.1.
[13] L.M. Ma, Z.M. Tan, Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger, Atmospheric Research, 92 (2009) 190-211. https://doi.org/10.10 16/j.atmosres.2008.09.022.
[14] K.A. Reed, C. Jablonowski, Impact of physical parameterizations on idealized tropical cyclones in the Community Atmosphere Model, Geophys Res Lett, 38 (2011). https://doi.org/10.1029/2010GL0 46297.
[15] J.S. Kain, J.M. Fritsch, Convective parameterization for mesoscale models: the Kain-Fritsch scheme. In: The representation of cumulus convection in numerical models, American Meteorological Society, (1993) 165-170.
[16] G. Grell, Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Wea. Rev., 121 (1993) 764-787.
[17] G.T. Diro, F. Giorgi, R. Fuentes-Franco, K.J.E. Walsh, G. Giuliani, E. Coppola, Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain, Clim. Change, 125 (2014) 79-94.
[18] K. Emanuel, A scheme for representing cumulus convection in large scale models, J. Atmos. Sci., 48 (1991) 2313-2335.
[19] Y. Sun, Z. Zhong, W. Lu, Y. Hu, Why are tropical cyclone tracks over the Western North Pacific sensitive to the cumulus parameterization scheme in Regional Climate Modeling? A case study for Megi (2010), Mon. Wea. Rev., 142 (2014) 1240-1249.https://doi.org/10.1175/MWR-D-13-00232.1.
[20] R.D. Kanase, P.S. Salvekar, Effect of physical parameterization schemes on track and intensity of cyclone LAILA using WRF model, Asia-Pacific Journal of Atmospheric Sciences, 51 (2015) 205-227.
[21] Z.H. Zeng, Y. Wang, Y.H. Duan, L.S. Chen, Z. Gao, On sea surface roughness parameterization and its effect on tropical cyclone structure and intensity, Adv. Atmos. Sci., 27 (2010) 337-355.
[22] R. Fuentes-Franco, F. Giorgi, E. Coppola, K. Zimmermann, Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over Eastern Tropical Pacific and Tropical North Atlantic Oceans in the RegCM4 model, Climate dynamics, 49 (2017) 547-561. https://doi.org/10.1007/s00382-016-3357-3.
[23] X. Zeng, M. Zhao, R.E. Dickinson, Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data, J. Clim., 11 (1998) 2628-2644.
[24] B.H. Hai, P.V. Tan, Developing a tropical cyclone-like vortex scheme for RegCM model to simulate tropical cyclone activity over the West North Pacific and Vietnam East Sea, Journal of Hydro-meteorology 8 (584) (2009) 1-8.
[25] V.T. Phan, T.T. Long, B.H. Hai, C. Kieu, Seasonal forecasting of tropical cyclone activity in the coastal region of Vietnam using RegCM4.2, Clim. Res., 62 (2015) 115-129. https://doi.org/10.3354/ cr01267.
[26] W.C. Skamarock, J.B. Klemp, J. Dudhia, D.O. Gill, D.M. Barker, M.G. Duda, X.Y. Huang, W. Wang, and J.G. Powers, A description of the advanced research WRF version 3, NCAR Technical Note NCAR/TN-475CSTR, (2008).
[27] Y. Sun, Z. Zhong, H. Dong, J. Shi, Y. Hu, Sensitivity of tropical cyclone track simulation over the western North Pacific to different heating/drying rates in the Betts–Miller–Janjic scheme, Mon. Wea. Rev., 143 (2015) 3478-3494. https://doi.org/10.1175/MWR-D-14-00340.1.
[28] T. Islam, P.K. Srivastava, M.A. Rico-Ramirez, Q. Dai, M. Gupta, and S. K. Singh, Tracking a tropical cyclone through WRF-ARW simulation and sensitivity of model physics, Natural Hazards, 76 (2015) 1473-1495. https://doi.org/10.1007/s11069 -014-1494-8.
[29] K.T. Chan, J.C. Chan, Sensitivity of the simulation of tropical cyclone size to microphysics schemes, Advances in Atmospheric Sciences, 33 (2016) 1024-1035. https://doi.org/10.1007/s00376-016-5183-2.
[30] F. Giorgi, F. Solmon, G. Giuliani, Regional Climatic Model RegCM, User’s Guide v4.6, ICTP, (2016).
[31] E. Nellie, B. Xunqiang, G. Filippo, N. Badrinath, P. Jeremy, S. Fabien, R. Sara, Z. Ashraf, O. Travis, N. Rita, and G. Graziano, Regional Climate Model RegCM reference manual v4.6, ICTP, (2014).
[32] C.C.F. Lok., J.C.L. Chan, Simulating seasonal tropical cyclone intensities at landfall along the South China coast. Climate dynamics, 50 (2018) 2661-2672. https://doi.org/10.1007/s00382-017-3762-2.
[33] S. Vishnu, J. Sanjay, and R. Krishnan, Assessment of climatological tropical cyclone activity over the north Indian Ocean in the CORDEX-South Asia regional climate models, Climate Dynamics, 53 (2019) 5101-5118. https://doi. org/10.1007/s00382 -019-04852-8.
[34] S. Saha, S. Moorthi, H. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y. Hou, H. Chuang, H.H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. Van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. van den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R.W. Reynolds, G. Rutledge, M. Goldberg, The NCEP Climate Forecast System Reanalysis, Bull. Amer. Meteor. Soc., 91 (2010) 1015-1058. https://doi.org/10. 1175/2010BAMS3001.1.