Pham Van Quang

Main Article Content

Abstract

Abstract: Epigeic Metaphire sp., anecic Amynthas zenkevichi, and endogeic Amynthas robustus are three earthworm species commonly found in Northern Vietnam and are expected to have contrasting impacts on soil structure and water infiltration. Through computed tomography and image analysis, our study confirmed contrasting burrowing behaviors among these species and their differential effects on water flow under saturated conditions. Metaphire sp. was a surface-dwelling species, exhibiting a food consumption and surface cast production of 4.57 and 11.05 times their weight, respectively. They made few burrows near the soil surface (0.02% of the soil column), resulting in negligible influence on water infiltration. A. zenkevichi was less active on the soil surface, with lower food consumption and surface cast production (2.48 and 7.52 times their weight, respectively). Their drilosphere (zone of soil directly influenced by earthworms) accounted for 3.92% of the soil column, characterized by vertical burrows (55.4º), fewer branches, distributed throughout the soil column, and high connectivity, leading to a 1.68-fold increase in water infiltration compared to the control. Meanwhile, A. robustus was only active within the first 10 cm of the soil column. Their drilosphere occupied 3.25% of the soil column, consisting of horizontal burrows (14º), disconnected by deposition within the burrows, resulting in no significant difference in water flows in comparison with the control column without earthworms. Additionally, the ratio between compaction zone around burrows and burrows made by A. zenkevichi has a larger than that of A. robustus (2.4 and 1.3, respectively), despite their similar diameter.


 


 


 


 

Keywords: Earthworms, burrowing behaviors, computed tomography, soil water infiltration.

References

[1] C. G. Jones, J. H. Lawton, M. Shachak, Organisms as Ecosystem Engineers, Oikos, Vol. 69, No. 3, 1994, pp. 373, https://doi.org/10.2307/3545850.
[2] M. Shipitalo, R. C. L. Bayon, Quantifying the Effects of Earthworms on Soil Aggregation and Porosity, in Earthworm Ecology, CRC Press, 2004, pp. 183-200, https://doi.org/10.1201/9781420039719.Pt5.
[3] J. Hallam, M. E. Hodson, Impact of Different Earthworm Ecotypes on Water Stable Aggregates and Soil Water Holding Capacity, Biol Fertil Soils, Vol. 56, No. 5, 2020, pp. 607-617, https://doi.org/10.1007/S00374-020-01432-5.
[4] Y. Capowiez, N. Bottinelli, S. Sammartino,
E. Michel, P. Jouquet, Morphological and Functional Characterisation of the Burrow Systems of Six Earthworm Species (Lumbricidae), Biol Fertil Soils, Vol. 51, No. 7, 2015, pp. 869-877, https://doi.org/10.1007/S00374-015-1036-X.
[5] F. Bastardie, M. Cannavacciuolo, Y. Capowiez,
J. R. D. Dreuzy, A. Bellido, D. Cluzeau, A New Simulation for Modelling the Topology of Earthworm Burrow Systems and Their Effects on Macropore Flow in Experimental Soils, Biol Fertil Soils, Vol. 36, No. 2, 2002, pp. 161-169, https://doi.org/10.1007/S00374-002-0514-0.
[6] J. P. Mcdaniel, G. Butters, K. A. Barbarick, M. E. Stromberger, Effects of Aporrectodea Caliginosa on Soil Hydraulic Properties and Solute Dispersivity, Soil Science Society of America Journal, Vol. 79, No. 3, 2015, pp. 838-847, https://doi.org/10.2136/Sssaj2014.07.0290.
[7] T. Sander, H. H. Gerke, Modelling Field-Data of Preferential Flow in Paddy Soil Induced by Earthworm Burrows, J Contam Hydrol, Vol. 104, No. 1-4, 2009, pp. 126-136, https://doi.org/10.1016/J.Jconhyd.2008.11.003.
[8] M. Blouin, M. E. Hodson, E. A. Delgado, G. Baker, L. Brussaard, K. R. Butt, J. Dai, L. Dendooven,
G. Peres, J. E. Tondoh, D. Cluzeau, J. J. Brun, A Review of Earthworm Impact on Soil Function and Ecosystem Services, Eur J Soil Sci, Vol. 64, No. 2, 2013, pp. 161-182, https://doi.org/10.1111/EJSS.12025.
[9] D. H. Lam, N. Q. Nguyen, A. D. Nguyen, T. T. Nguyen, A Checklist of Earthworms (Annelida: Oligochaeta) in Southeastern Vietnam, J Threat Taxa, Vol. 13, No. 2, 2021, pp. 17693-17711.
[10] T. T. Nguyen, A. D. Nguyen, B. T. T. Tran, R. J. Blakemore, A Comprehensive Checklist of Earthworm Species And Subspecies From Vietnam (Annelida: Clitellata: Oligochaeta: Almidae, Eudrilidae, Glossoscolecidae, Lumbricidae, Megascolecidae, Moniligastridae, Ocnerodrilidae, Octochaetidae), Zootaxa, Vol. 4140, No. 1, 2016, pp. 1, https://doi.org/10.11646/Zootaxa.4140.1.1.
[11] D. L. T. Anh, Q. T. T. Nguyen, C. Gan, T. D. Thai, T. A. Nguyen, Vietnamese Living Habits, Wellbeing and Working Adaptation in Face of COVID-19’s Strictest Lockdown, Int J Soc Econ, Vol. 49, No. 8, 2022, pp. 1232-1254, https://doi.org/1108/IJSE-11-2021-0723.
[12] P. Jouquet, N. Bottinelli, G. Kerneis, T. H. D. Tureaux, T. T. Doan, O. Planchon, T. D. Tran, Surface Casting of the Tropical Metaphire Posthuma Increases Soil Erosion and Nitrate Leaching in A Laboratory Experiment, Geoderma, Vol. 204-205, 2013, pp. 10-14, https://doi.org/10.1016/J.Geoderma.2013.04.003.
[13] N. Bottinelli, J. L. Maeght, V. N. T. Le,
C. Boonchamni, T. T. Doan, T. M. Tran, H. A. Boukbida, L. Smaili, P. Jouquet, to What Extent Do Ageing and Soil Properties Influence Amynthas Khami Cast Properties? Evidence from A Small Watershed In Northern Vietnam, Applied Soil Ecology, Vol. 158, 2021, pp. 103792, https://doi.org/10.1016/j.apsoil.2020.103792.
[14] M. B. Bouché, Lombriciens De France. Ecologie Et Systématique, Vol. 72, No. HS. INRA Editions, 1972.
[15] N. T.Tung, The Earthworm Fauna of the Cuu Long Delta, Phd Dissertation in Zoology, Hanoi,
Vietnam, 2013.
[16] T. T. Doan, P. Sisouvanh, T Sengkhrua,
S. Sritumboon, C. Rumpel, P. Jouquet, N. Bottinelli, Site-Specific Effects of Organic Amendments on Parameters of Tropical Agricultural Soil and Yield: A Field Experiment in Three Countries in Southeast Asia, Agronomy, Vol. 11, No. 2, 2021, pp. 348, https://doi.org/10.3390/Agronomy11020348.
[17] D. Legland, I. Arganda-Carreras, P. Andrey, Morpholibj: Integrated Library and Plugins for Mathematical Morphology with Imagej, Bioinformatics, Vol. 32, No. 22, 2016,
pp. 3532-3534, https://doi.org/10.1093/Bioinformatics/Btw413.
[18] M. Doube, M. M. Kłosowski, I. A. Carreras, F. P. Cordelières, R. P. Dougherty, J. S. Jackson,
B. Schmid, J. R. Hutchinson, S. J. Shefelbine, Bonej: Free and Extensible Bone Image Analysis in Imagej, Bone, Vol. 47, No. 6, 2010, pp. 1076-1079, https://doi.org/10.1016/J.Bone.2010.08.023.
[19] R Core Team, R: A Language and Environment for Statistical Computing, 2010.
[20] H. Wickham, Ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org., 2016 (accessed on: August 1st, 2023).
[21] F. Mendiburu, Agricolae: Statistical Procedures for Agricultural Research. R Package Version 1.3–2, https://cran, r-proje ct.Org/package= agric olae, 2020 (accessed on: August 1st, 2023).
[22] T. Wei, V. Simko, R Package Corrplot: Visualization of A Correlation Matrix, Version 0.92, 2021.
[23] M. J. I. Briones, R. Á, Otero, Body Wall Thickness As A Potential Functional Trait for Assigning Earthworm Species to Ecological Categories, Pedobiologia (Jena), Vol. 67, 2018, pp. 26-34, https://doi.org/: 10.1016/J.Pedobi.2018.02.001.
[24] R. V. D. Logt, C. Versteeg, P. Struyk, N. V. Eekeren, The Anecic Earthworm Lumbricus Terrestris Can Persist after Introduction Into Permanent Grassland on Sandy Soil, Eur J Soil Biol, Vol. 119, 2023, pp. 103536, https://doi.org/10.1016/j.ejsobi.2023.103536.
[25] Y. Capowiez, N. Bottinelli, P. Jouquet, Quantitative Estimates of Burrow Construction and Destruction, by Anecic and Endogeic Earthworms in Repacked Soil Cores, Applied Soil Ecology, Vol. 74, 2014, pp. 46-50, https://doi.org/10.1016/j.apsoil.2013.09.009.
[26] V. Hallaire, P. Curmi, A. Duboisset, P. Lavelle,
B. Pashanasi, Soil Structure Changes Induced by the Tropical Earthworm Pontoscolex Corethrurus and Organic Inputs in A Peruvian Ultisol, Eur J Soil Biol, Vol. 36, No. 1, 200, pp. 35-44, https://doi.org/10.1016/S1164-5563(00)01048-7.