Trinh Tuan Long, Phan Van Tan, Pham Quang Nam, Pham Thanh Ha, Tran Anh Quan, Nguyen Xuan Thanh

Main Article Content

Abstract

Drought is a natural disaster that causes significant damages to the economy, society and environment. Forecasting droughts is crucial for disaster risk management and water security. This study introduces a new method for forecasting seasonal droughts in Vietnam using the Standardized Precipitation Index (SPI) which is based on a combination of dynamic modeling and statistical methods. The precipitation forecast products from regional climate models (RegCM, clWRF) with inputs from Climate Forecast System (CFSv2) were used to calculate the SPI index after statistical calibration. Results show that calibrating model precipitation with statistical methods such as Artificial Neural Networks (ANN) and Multivariate Linear Regression (MLR) significantly improves the precipitation forecast accuracy. Evaluation indices indicate that the SPI calculated with the post-calibration model precipitation has a good reproducibility for drought events, particularly mild droughts. However, there remains some limitations on accurate forecast of the intensity and spatial distribution of moderate drought events in certain regions such as Central Vietnam.


 


 


 

Keywords: Drought, SPI, seasonal forecast, Vietnam.

References

[1] B. I. Cook, J. E. Smerdon, R. Seager, S. Coats, Global Warming and 21st Century Drying, Climate Dynamics, Vol. 43, 2014, pp. 2607-2627, https://doi.org/10.1007/s00382-014-2075-y.
[2] B. Livneh, M. P. Hoerling, The Physics of Drought in the U. S. Central Great Plains, Journal of Climate, Vol. 29, 2016, pp. 6783-6804, https://doi.org/10.1175/JCLI-D-15-0697.1.
[3] A. F. V. Loon, T. Gleeson, J. Clark, A. I. V. Dijk, K. Stahl, J. Hannaford, G. D. Baldassarre, A. J. Teuling, L. M. Tallaksen, R. Uijlenhoet, D. M. Hannah, J. Sheffield, M. Svoboda, B. Verbeiren, T. Wagener, S. Rangecroft, N. Wanders, H. Lanen, Drought in the Anthropocene, Nature Geoscience, Vol. 9, 2016, pp. 89-91, https://doi.org/10.1038/ngeo2646.
[4] Z. Hao, F. Hao, Y. Xia, V. P. Singh, Y. Hong, X. Shen, W. A. Ouyang, A Statistical Method for Categorical Drought Prediction Based on NLDAS-2, Journal of Applied Meteorology and Climatology, Vol. 55, 2016, pp. 1049-1061, https://doi.org/10.1175/JAMC-D-15-0200.1.
[5] S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y. Hou, H. Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. P. Mendez, H. Dool, Q. Zhang, W. Wang, M. Chen, E. Becker, The NCEP Climate Forecast System Version 2, Journal of Climate, Vol. 27, 2014, pp. 2185-2208, https://doi.org/10.1175/JCLI-D-12-00823.1.
[6] F. Molteni, T. Stockdale, M. Balmaseda, G. Balsamo, R. Buizza, L. Ferranti, L. Magnusson, K. Mogensen, T. Palmer, F. Vitart, The New ECMWF Seasonal Forecast System (System 4), ECMWF Technical Memoranda, 2011, Retrieved from https://www.ecmwf.int/en/research/publications (accessed on: May 4th, 2024).
[7] M. A. Crimmins, M. P. McClaran, Where do Seasonal Climate Predictions belong in the Drought Management Toolbox?, Rangelands, Vol. 38, 2016, pp. 169-176, https://doi.org/10.1016/j.rala.2016.06.004.
[8] F. J. D. Reyes, J. G. Serrano, F. Lienert, A. P. Biescas, L. Rodrigues, Seasonal Climate Predictability and Forecasting: Status and Prospects, Wiley Interdisciplinary Reviews: Climate Change, Vol. 4, 2013, pp. 245-268, https://doi.org/10.1002/wcc.217.
[9] N. Wanders, E. F. Wood, Improved Sub-seasonal Meteorological Forecast Skill using Weighted Multi-model Ensemble Simulations, Environmental Research Letters, Vol. 11, 2016, https://doi.org/10.1088/1748-9326/11/9/094007.
[10] E. Dutra, W. Pozzi, F. Wetterhall, F. D. Giuseppe, L. Magnusson, G. Naumann, P. Barbosa, J. Vogt, F. Pappenberger, Global Meteorological Drought–Part 2: Seasonal Forecasts, Hydrology and Earth System Sciences, Vol. 18, 2014, pp. 2669-2678, https://doi.org/10.5194/hess-18-2669-2014.
[11] K. C. Mo, B. Lyon, Global Meteorological Drought Prediction using the North American Multi-Model Ensemble, Journal of Hydrometeorology, Vol. 16, 2015, pp. 1409-1424, https://doi.org/10.1175/JHM-D-14-0192.1.
[12] A. C. Steinemann, Using Climate Forecasts for Drought Management, Journal of Applied Meteorology and Climatology, Vol. 45, 2006, pp. 1353-1361, https://doi.org/10.1175/JAM2401.1.
[13] X. Yuan, E. F. Wood, Multi-model Seasonal Forecasting of Global Drought Onset, Geophysical Research Letters, Vol. 40, 2013, pp. 4900-4905, https://doi.org/10.1002/grl.50949.
[14] B. Kirtman, A. Pirani, The State of the Art of Seasonal Prediction, Bulletin of the American Meteorological Society, Vol. 90, 2009, pp. 455-458, https://doi.org/10.1175/2008BAMS2707.1.
[15] NRC, Assessment of Intraseasonal to Interannual Climate Prediction and Predictability, National Academies Press, Washington, DC, 2010.
[16] D. M. Smith, A. A. Scaife, B. P. Kirtman, What is the Current State of Scientific Knowledge with Regard to Seasonal and Decadal Forecasting?, Environmental Research Letters, Vol. 7, No. 1, 2012,
https://doi.org/10.1088/1748-9326/7/1/015602.
[17] N. D. Ngu, N. T. Hieu, Climate and Climate Resources of Vietnam, Agricultural Publishing House, 2004 (in Vietnamese).
[18] P. V. Tan, N. D. Thanh, T. H. T. M. Ha, Seasonal and Interannual Variations of Surface Climate Elements over Vietnam, Climate Research, Vol. 40, 2009, pp. 49-60, https://doi.org/10.3354/cr00824.
[19] N. T. Hanh, V. T. Hang, P. V. Tan, Seasonal Rainfall Forecasting Using the clWRF Model: Sensitivity of Convective Parameterization Schemes, VNU Journal of Science: Earth and Environmental Sciences, Vol. 32, 2016, pp. 25-33 (in Vietnamese).
[20] P. V. Tan, N. V. Hiep, T. T. Long, N. Q. Trung, N. D. Thanh, P. Laux, N. X. Thanh, Seasonal Prediction of Surface Air Temperature across Vietnam using the Regional Climate Model version 4.2 (RegCM4.2), Advances in Meteorology, 2014, https://doi.org/10.1155/2014/245104.
[21] V. T. Hang, N. T. Hanh, Experimental Seasonal Forecasting of Monthly Mean Temperature and Precipitation for Vietnam Using the clWRF Model, VNU Journal of Science: Earth and Environmental Sciences, Vol. 30, No. 1, 2014 (in Vietnamese).
[22] https://phongchongthientai.mard.gov.vn/ (accessed on: May 4th, 2024).
[23] N. L. Bang, ENSO Influence on Hydrometeorological Drought Variability in the Cai River Basin, Water Resources and Environmental Journal, Vol. 46, 2014, pp. 71-78 (in Vietnamese).
[24] V. H. Nguyen, Q. F. Li, L. B. Nguyen, Drought Forecasting using ANFISa Case Study in Drought Prone Area of Vietnam, Paddy and Water Environment, Vol. 15, 2017, pp. 605-616, https://doi.org/10.1007/s10333-017-0579-x.
[25] L. H. N. Thanh, N. H. Ngu, N. T. N. Linh, D. Q. Nõn, Investigating the Impact of Drought on Rice Cultivation in Que Son District, Quang Nam Province, Vietnam Science and Technology - University of Agriculture and Forestry - Hue University, Vol. 2, No. 1, 2018, pp. 547-558 (in Vietnamese).
[26] T. Q. Duc, P. V. Tan, N. P. Thao, T. T. Long, C. T. T. Huong, N. V. Hiep, Investigation of Drought Characteristics Across Vietnam During Period 1980-2018 using SPI and SPEI Drought Indices, VNU Journal of Science: Earth and Environmental Sciences, Vol. 38, 2022, pp. 71-84, https://doi.org/10.25073/2588-1094/vnuees.4757 (in Vietnamese).
[27] N. X. Thanh, N. D. Thanh, H. Kamimera, T. T. Long, J. Matsumoto, T. Inoue, P. V. Tan, The Vietnam Gridded Precipitation (VnGP) Dataset: Construction and Validation, SOLA, Vol. 12, 2016, pp. 291-296, https://doi.org/10.2151/sola.2016-057.
[28] T. A. Quan, N. D. Thanh, E. Espagne, T. T. Long, A High-resolution Projected Climate Dataset for Vietnam: Construction and Preliminary Application in Assessing Future Change, Journal of Water and Climate Change, Vol. 13, 2022, pp. 3379-3399, https://doi.org/10.2166/wcc.2022.144.
[29] P. V. Tan, N. X. Thanh, N. V. Hiep, P. Laux, P. T. Ha, N. D. Thanh, Evaluation of the NCEP Climate Forecast System and Its Downscaling for Seasonal Rainfall Prediction over Vietnam, Weather and Forecasting, Vol. 33, 2018, pp. 615-640, https://doi.org/10.1175/WAF-D-17-0098.1.
[30] A. D. Luca, R. Elía, R. Laprise, Potential for Small Scale Added Value of RCM’s Downscaled Climate Change Signal, Climate Dynamics, Vol. 40, 2013, pp. 601-618, https://doi.org/10.1007/s00382-012-1415-z.