Application of Google Earth Engine to Estimate the Water Capacity of Saigon–Dongnai Basin in the Period of 2005–2023 Using MODIS and CHIRPS Satellite Data
Main Article Content
Abstract
This study used the Google Earth Engine (GEE) platform to calculate the water capacity of the Saigon-Dongnai basin using remote sensing-derived products related to evapotranspiration (ET) and precipitation (P). The GEE was used to retrieve two important inputs: MODIS evapotranspiration spanning the drainage basin and CHIRPS satellite precipitation. We found that there was a net decrease in the water capacity from January to April every year as a result of greater evaporation and less precipitation. Due to the increase of precipitation from May to October following the decrease of solar radiation, and the drop in temperature, the rainy season imposed the highest values of the change in water capacity. Rainfall and evapotranspiration show a positive association, as does the relationship between water capacity and inputting water.
References
[2] A. Poortinga, Q. Nguyen, N. S. Thwal, A. P. Nicolau, Water Balance and Drought, JA Cardille, MA Crowley, D Saah, NE Clinton, Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications, Springer International Publishing, 2024, pp. 953-983, https://doi.org/10.1007/978-3-031-26588-4_44.
[3] H. Suryatmojo, Water Balance Changes in the Tropical Rainforest with Intensive Forest Management System, International Journal of Sustainable Future for Human Security, Vol. 1, No.2, 2013, pp. 56-62, https://doi.org/10.24910/JSUSTAIN%2F1.2%2F5662.
[4] J. I. L. Moreno, E. M. Tejeda, S. M. V. Serrano,
J. Bazo, C. A. Molina, J. Revuelto, A. S. Lorenzo, F. N. Serrano, E. Aguilar, O. Chura, Recent Temperature Variability and Change in the Altiplano of Bolivia and Peru, International Journal of Climatology, Vol. 36, No. 4, 2016,
pp. 1773-1796, https://doi.org/10.1002/joc.4459.
[5] S. Hunziker, S. Brönnimann, J. Calle, I. Moreno, M. Andrade, L.Ticona, A. Huerta, W. Lavado-Casimiro, Effects of Undetected Data Quality Issues on Climatological Analyses, Climate of the Past, Vol. 14, 2018, pp. 1-20, https://doi.org/10.5194/cp-14-1-2018.
[6] Z. M. Nigatu, T. Rientjes, A.T. Haile, Hydrological Impact Assessment of Climate Change on Lake Tana’s Water Balance, Ethiopia, American Journal of Climate Change, Vol. 5, 2016, pp. 27-37, https://doi.org/10.4236/ajcc.2016.51005
[7] H. Tamiminia, B. Salehi, M. Mahdianpari, L. Quackenbush, S. Adeli, B. Brisco, Google Earth Engine for Geo-big Data Applications: A Meta-Analysis And Systematic Review, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 164, 2020, pp. 152-170, https://doi.org/10.1016/j.isprsjprs.2020.04.001.
[8] N. N. Patel, E. Angiuli, P. Gamba, A. Gaughan, G. Lisini, F. R. Stevens, A. J. Tatem, G. Trianni, Multitemporal settlement and population mapping from Landsat using Google Earth Engine, International Journal of Applied Earth Observation and Geoinformation, Vol. 35, 2015, pp. 199-208, https://doi.org/10.1016/j.jag.2014.09.005.
[9] H. Huang, Y. Chen, N. Clinton, J. Wang, X. Wang, C. Liu, P. Gong, J. Yang, Y. Bai, Y Zheng, Z. Zhu, Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine, Remote Sensing of Environment, Vol. 202, 2017, pp. 166-176, https://doi.org/10.1016/j.rse.2017.02.021.
[10] H. A. Zurqani, C. J. Post, E. A. Mikhailova, M. A. Schlautman, J. L. Sharp, Geospatial Analysis of Land Use Change in the Savannah River Basin using Google Earth Engine, International Journal of Applied Earth Observation and Geoinformation, Vol. 69, 2018, pp. 175-185, https://doi.org/10.1016/j.jag.2017.12.006.
[11] E. L. Bullock, C. E. Woodcock, P. Olofsson, Monitoring Tropical Forest Degradation Using Spectral Unmixing And Landsat Time Series Analysis, Remote Sensing of Environment,
Vol. 238, 2020, pp. 110968, https://doi:10.1016/j.rse.2018.11.011.
[12] X. Liu, G. Hu, Y. Chen, X. Li, X. Xu, S. Li, F. Pei, S. Wang, High-resolution Multi-temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform, Remote Sensing of Environment, Vol. 209, 2018, pp. 227-239, https://doi.org/10.1016/j.rse.2018.02.055.
[13] B. Chen, X. Xiao, X. Li , L. Pan, R. Doughty, J. Ma, J. Dong, Y. Qin, B. Zhao , Z. Wu, R. Sun, G. Lan, G. Xie, N. Clinton, C. Giri, A Mangrove Forest Map of China in 2015: Analysis of Time Series Landsat 7/8 and Sentinel-1A Imagery in Google Earth Engine Cloud Computing Platform, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 131, 2017, pp. 104-120, https://doi.org/10.1016/j.isprsjprs.2017.07.011.
[14] E. Meilianda, B. Pradhan, Syamsidik, L. K. Comfort, D. Alfian, R Juanda, S. Syahreza, K. Munadi, Assessment of Post-Tsunami Disaster Land Use/Land Cover Change and Potential Impact of Future Sea-Level Rise to Low-Lying Coastal Areas: A Case Study of Banda Aceh coast of Indonesia, International Journal of Disaster Risk Reduction, Vol. 41, 2019, pp. 101292, https://doi.org/10.1016/j.ijdrr.2019.101292.
[15] B. D. Vries, C. Huang, J. Armston, W. Huang, J. W. Jones, M. W. Lang, Rapid and robust Monitoring of Flood Events Using Sentinel-1 and Landsat Data On the Google Earth Engine, Remote Sensing of Environment, Vol. 240, 2020, pp. 111664, https://doi.org/10.1016/j.rse.2020.111664.
[16] T. H. Thai, Assessment of Climate Change Impacts on Flooding in the Downstream of the Dong Nai River, VNU Journal of Science, Earth Sciences Vol. 27, 2011, pp. 25-31, https://js.vnu.edu.vn/EES/article/view/1497.
[17] B. Lehner, G. Grill, Global River Hydrography and Network Routing: Baseline Data and New Approaches to Study the World’s Large River Systems, Hydrological Processes, Vol. 27, 2013, pp. 2171-2186, https://doi.org/10.1002/hyp.9740.
[18] N. N. H. Giang, C. N. X. Quang, D. T. Long, P. D. Ky, N. D. Vu, D D. Tran, Statistical and Hydrological Evaluations of Water Dynamics in the Lower Sai Gon-Dong Nai River, Vietnam, Water, Vol. 14, No. 12022, pp. 130, https://doi.org/10.3390/w14010130.