Nguyen Duc Toan, Tran Anh Quan, Trinh Thi Thuy, Lai Duc Ngan

Main Article Content

Abstract

Maintaining navigable port channels through dredging is crucial for maritime trade, yet offshore disposal of dredged material can impact the local marine environments. This study modeled the dispersion and deposition patterns of total suspended solids (TSS) resulting from the disposal of dredged sediments at an offshore site near Tho Quang Port, central Vietnam. An advanced coupled numerical modeling system integrating hydrodynamics, spectral waves, and sediment transport processes was developed using the MIKE modeling suite. Extensive field data was collected and used for model parameterization, boundary conditions, and rigorous validations, including bathymetry surveys, acoustic doppler current profiler measurements, tide gauge data, and sediment sampling/characterization like grain sizes, densities, settling velocities. Simulations over a 45-day construction period represented extreme scenarios under contrasting Southwest and Northeast monsoon conditions. The model results showed that the highest TSS concentrations, above 0.05 kg/m³, were restricted to an area within 12 km of the disposal location. However, the 0.015-0.02 kg/m3 contour extended further along the predominant northwest-southeast dispersion axis aligned with prevailing winds and currents, reaching 12-18 km. Seabed accumulation patterns showed a radially symmetrical cone with maximum thicknesses of 0.5 m proximal to the release site. The 0.1 m deposition footprint spanned 102-122 ha due to asymmetric sediment advection by the contrasting monsoon forcings. Key factors governing the dispersion and accumulation patterns included sediment characteristics, hydrodynamics (tides, currents, waves), wind forcing, and bathymetry. TSS plumes and sedimentation footprints were constrained, suggesting disposal impacts may be localized around the authorized site during operations based on the limited dispersion predicted. This study highlights the value of integrated numerical modeling for quantitatively forecasting the environmental impacts of dredged material disposal. Such predictive insights can guide monitoring programs, ecological risk assessments, and the development of mitigation strategies to balance infrastructure growth with environmental protection goals for coastal regions.


Keywords: Submersion; enviromental modeling; sediment dredging; TSS dispersion; seabed occupation.

Keywords: Submersion; enviromental modeling; sediment dredging; TSS dispersion; seabed occupation.

References

[1] H. Tanaka, V. C. Hoang, V. T. Nguyen, Investigation of Morphological Change at the Cua Dai River Mouth Through Satellite Image Analysis, Coastal Engineering Proceedings,
Vol. 35, 2017, https://doi.org/10.9753/icce.v35.sediment.9.
[2] D. V. Vu, D. L. Tran, Impact of Wave Conditions on Sediment Transport Characteristics and Seabed Morphology Changes in the Coastal Estuary of Hai Phong. Journal of Marine Science and Technology, Vol. 18, No. 1, 2018, https://doi.org/10.15625/1859-3097/18/1/9045.
[3] D. N. Quang, N. Q. D. Anh, H. S. Tam, N. X. Tinh, H. Tanaka, N. T. Viet, Evaluation of Cua Lo Estuary’s Morpho-Dynamic Evolution and Its Impact on Port Planning, Journal of Marine Science and Engineering, Vol. 11, No. 3, 2023, https://doi.org/10.3390/jmse11030611.
[4] T. D. Lan, V. D. Vinh, D. T. T. Huong, D. G. Khanh, Assessment of the Ability to Select the Position for Dredging Material and Navigating Maritime Traffic in the Sea Area of Hai Phong Port, Journal of Marine Science and Technology, Vol. 19, No. 4, 2020, https://doi.org/10.15625/1859-3097/19/4/12713.
[5] F. Samsami, S. A. Haghshenas, M. Soltanpour. Physical and Rheological Characteristics of Sediment for Nautical Depth Assessment in Bushehr Port and Its Access Channel, Water,
Vol. 14, No. 24, 2022, https://doi.org/10.3390/w14244116.
[6] N. T. H. Ngoc, T. A. Quan, The Dispersion of Total Suspended Solids in Seawater Following Submersion of Dredged Material in the Vung Ang Port, Vietnam Journal of Agricultural Sciences, Vol. 6, No. 4, 2023, https://doi.org/10.31817/vjas.2023.6.4.04.
[7] J. A. Zyserman, J. Fredsøe, Data Analysis of Bed Concentration of Suspended Sediment, Journal of Hydraulic Engineering, Vol. 120, No. 9, 1994, https://doi.org/10.1061/(ASCE)0733-9429(1994) 120:9(1021).
[8] J. P. M. Syvitski, Y. Saito, Morphodynamics of Deltas Under the Influence of Humans, Global and Planetary Change, Vol. 57, No. 3, 2007, https://doi.org/10.1016/j.gloplacha.2006.12.001.
[9] M. Prumm, I. Gregorio, Impacts of Port Development on Estuarine Morphodynamics: Ribadeo (Spain), Ocean & Coastal Management, Vol. 130, 2016, https://doi.org/10.1016/j.ocecoaman.2016.05.003.
[10] N. Kamal, S. Nahla, Evaluating and Analyzing Navigation Efficiency for the River Nile (Case Study: Ensa-Naga Hamady Reach), Ain Shams Engineering Journal, Vol. 9, No. 4, 2018, https://doi.org/10.1016/j.asej.2017.08.006,
[11] E. L. Jackson, B. English, A. D. Irving, A. M. Symonds, G. Dwane, O. T. Nevin, D. T. Maher, A Multifaceted Approach for Determining Sediment Provenance to Coastal Shipping Channels, Journal of Marine Science and Engineering, Vol. 7, No. 12, 2019, https://doi.org/10.3390/jmse7120434,
[12] R. Firmansyah, M. Z. Jauzi, D. C. Istiyanto, A. Subarkah, S. U. Sujoko, M. Wibowo, R. C. Yuniardi. Study on the Design and Implementation of BPPT-Lock Armored Groin for Sediment Control Structure in Front of Sea Water Intake, Zona Laut Jurnal Inovasi Sains Dan Teknologi Kelautan, Vol. 4, No. 3, 2023, https://doi.org/10.62012/zl.v4i3.28244.
[13] E. Espagne, T. N. Duc, M. H. Nguyen, E. Pannier, M. N. Woillez, A. Drogoul, T. P. L. Huynh, T. T. Le, T. T. H. Nguyen et al., Climate Change in Vietnam, Impacts and Adaptation: A COP26 Assessment Report of the GEMMES Vietnam Project, Agence Française de Développement, 2021.
[14] Q. T. Anh, T. N. Duc, E. Espagne, L. T. Tuan, A High-Resolution Projected Climate Dataset for Vietnam: Construction and Preliminary Application in Assessing Future Change, Journal of Water and Climate Change, Vol. 13, No. 9, 2022, https://doi.org/10.2166/wcc.2022.144.
[15] Q. T. Anh, T. N. Duc, E. Espagne, L. T. Tuan, A 10-km CMIP6 Downscaled Dataset of Temperature and Precipitation for Historical and Future Vietnam Climate, Scientific Data, Vol. 10, No. 1, 2023, https://doi.org/10.1038/s41597-023-02159-2.
[16] T. C. Vu, V. T. Mai, B. N. Nguyen, V. D. Nguyen, T. Hoang, The Interaction of Tide and River Flow on Water Quality in Hai Phong Coastal Waters (Lach Huyen-Do Son) Drawn from Field Observation, Vietnam Journal of Marine Science and Technology, Vol. 23, No. 2, 2023, https://doi.org/10.15625/1859-3097/17997.
[17] N. Q. D. Anh, D. C. Dien, H. S. Tam, N. T. Viet, H. Tanaka, Numerical Simulation of Hydrodynamic and Sediment Transport at Cua Lo Inlet, Quang Nam Province, Vietnam, In Proceedings of the 8th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science, 2020, pp. 51-60, 2020.
[18] J. R. Cox, J. Lingbeek, S. A. H. Weisscher, M. G. Kleinhans, Effects of Sea-Level Rise on Dredging and Dredged Estuary Morphology, Journal of Geophysical Research: Earth Surface, Vol. 127, No. 10, 2022, https://doi.org/10.1029/2022JF006790.
[19] D. H. Wilber, D. G. Clarke, Biological Effects of Suspended Sediments: A Review of Suspended Sediment Impacts on Fish and Shellfish with Relation to Dredging Activities in Estuaries. North American Journal of Fisheries Management, Vol. 21, No. 4, 2001, https://doi.org/10.1577/1548-8675(2001)021<0855:BEOSSA>2.0.CO;2.
[20] V. L. G. Todd, I. B. Todd, J. C. Gardiner, E. C. N. Morrin, N. A. MacPherson, N. A. DiMarzio, F. Thomsen, A Review of Impacts of Marine Dredging Activities on Marine Mammals. ICES Journal of Marine Science, Vol. 72, No. 2, 2015, https://doi.org/10.1093/icesjms/fsu187.
[21] S. G. Bolam, H. L. Rees, P. Somerfield, R. Smith, K. R. Clarke, RAtkins, E. G. M. Warwick, M. Arnacho, Ecological Consequences of Dredged Material Disposal in the Marine Environment: A Holistic Assessment of Activities Around the England and Wales Coastline. Marine Pollution Bulletin, Vol. 52, No. 4, 2006, https://doi.org/10.1016/j.marpolbul.2005.09.028.
[22] P. L. A. Erftemeijer, R. R. R. Lewis, Environmental Impacts of Dredging on Seagrasses: A Review. Marine Pollution Bulletin, Vol. 52,
No. 12, 2006, https://doi.org/10.1016/j.marpolbul.2006.09.006.
[23] T. A. Quan, D. T. Hai, N. T. H. Ngoc, The Dispersion of Suspended Matter in Seawater Caused by Dredging and Disposal of Dredged Materials at Nghi Son Port, Thanh Hoa, Journal of Environment, Vol. II, 2021.
[24] D. V. Duy, H. Tanaka, Y. Mitobe, N. Q. D. Anh, N. T. Viet, Sand Spit Elongation and Sediment Balance at Cua Lo Inlet in Central Vietnam,Journal of Coastal Research, Vol. 81, No. sp1, 2018, https://doi.org/10.2112/SI81-005.1.
[25] J. Lin, X. M. Xu, Y. Chen, Q. Z. Zhou, L. R. Yuan, Q. Zhu, J. H. Wang, Distribution and Composition of Suspended Matters in the Wintertime in the East China Sea, Science of the Total Environment,
Vol. 664, 2019, https://doi.org/10.1016/j.scitotenv.2019.02.021.
[26] T. Nagasawa, M. T. T. Thuy, N. T. Viet, H. Tanaka, Analysis of Shoreline Change in Cua Dai Beach by Using Empirical Orthogonal Function, Coastal Engineering Journal, Vol. 60, No. 4, 2018, https://doi.org/10.1080/21664250.2018.1554202.
[27] M. Bortali, M. Rabouli, M. Yessari, A. Hajjaji, Characterizing Harbor Dredged Sediment for Sustainable Reuse as Construction Material, Sustainability, Vol. 15, No. 3, 2023, https://doi.org/10.3390/su15031834.
[28] P. Ren, B. D. Bornhold, D. B. Prior, Seafloor Morphology and Sedimentary Processes, Knight Inlet, British Columbia, Sedimentary Geology, Vol. 103, No. 3-4, 1996, https://doi.org/10.1016/0037-0738(95)00090-9.
[29] T. A. Rydningen, J. S. Laberg, V. Kolstad, Seabed Morphology and Sedimentary Processes on High-Gradient Trough Mouth Fans Offshore Troms, Northern Norway, Geomorphology, Vol. 246, 2015, https://doi.org/10.1016/j.geomorph.2015.06.007.
[30] DHI, MIKE Power by DHI, 2017, https://www.mikepoweredbydhi.com/products/mike-3-wave-fm (accessed on: September 1st, 2024).
[31] K. Purkiani, B. Gillard, A. Paul, M. Haeckel, S. Haalboom, J. Greinert, H. D. Stigter, M. Hollstein, M. Baeye, A. Vink, L. Thomsen, M. Schulz, Numerical Simulation of Deep-Sea Sediment Transport Induced by a Dredge Experiment in the Northeastern Pacific Ocean, Frontiers in Marine Science, Vol. 8, 2021, https://doi.org/10.3389/fmars.2021.719463.
[32] J. E. Nash, J. V. Sutcliffe, River Flow Forecasting Through Conceptual Models Part I — A Discussion of Principles. Journal of Hydrology, Vol. 10, No. 3, 1970, https://doi.org/10.1016/0022-1694(70)90255-6.
[33] C. J. Willmott, S. M. Robeson, K. Matsuura, A Refined Index of Model Performance. International Journal of Climatology, Vol. 32, No. 13, 2012, https://doi.org/10.1002/joc.2419.
[34] R. L. Mille, Modeling Response of Water Temperature to Channelization in a Coastal River Network, River Research and Applications, Vol. 37, No. 3, 2021, https://doi.org/10.1002/rra.3756.
[35] J. M. Preston, D. R. Parrott, W. T. Collins, Sediment Classification Based on Repetitive Multibeam Bathymetry Surveys of an Offshore Disposal Site, Oceans 2003. Celebrating the Past, Teaming Toward the Future, Vol. 1, pp. 69-75, 2003, https://doi.org/10.1109/OCEANS.2003.178523.
[36] W. Yuwei, Z. Hui, H. Jun, R. Xingyue, X. Xiang, Finite Element Study on Temperature Field of Underwater Dredging Devices via the Artificial Ground Freezing Method, Geofluids, Vol. 2022, Article ID 7502693, 2022, https://doi.org/10.1155/2022/7502693.